K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

loading...   a) *) Chứng minh AMNB là hình bình hành:

Do O là giao điểm của AC và BD

Mà ABCD là hình bình hành (gt)

⇒ O là trung điểm của AC và BD

Do MN // AB (gt)

⇒ OM // CD

∆ACD có

O là trung điểm AC

OM // CD

⇒ M là trung điểm AD

⇒ AM = AD : 2   (1)

Do MN // AB (gt)

⇒ ON // AB

∆ABC có:

O là trung điểm AC (cmt)

ON // AB (cmt)

⇒ N là trung điểm BC

⇒ BN = BC : 2   (2)

Do ABCD là hình bình hành (gt)

⇒ AD // BC

⇒ AM // BN

Từ (1) và (2) ⇒ AM = BN

Tứ giác AMNB có:

AM // BN (cmt)

AM = BN (cmt)

⇒ AMNB là hình bình hành

*) Chứng minh APCQ là hình bình hành

Do ABCD là hình bình hành (gt)

⇒ AB // CD

⇒ AP // CQ

Tứ giác APCQ có:

AP // CQ (cmt)

AP = CQ (gt)

⇒ APCQ là hình bình hành

c) Do O là trung điểm AC (cmt)

M là trung điểm AD (cmt)

⇒ OM là đường trung bình của ∆ACD

⇒ OM = CD : 2   (3)

Do O là trung điểm AC (cmt)

N là trung điểm BC (cmt)

⇒ ON là đường trung bình của ∆ABC

⇒ ON = AB : 2

Mà AB = CD (do ABCD là hình bình hành)

⇒ OM = ON

⇒ O là trung điểm MN

Do APCQ là hình bình hành (cmt)

O là trung điểm AC (cmt)

⇒ O là trung điểm PQ

Tứ giác MPNQ có:

O là trung điểm MN (cmt)

O là trung điểm PQ (cmt)

⇒ MPNQ là hình bình hành

⇒ MP // NQ và MQ = NP

18 tháng 7 2023

A B C D O M N P Q

a/

Ta có

MN//AB (gt)

AD//BC=> AM//BN

=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có

AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/

Xét hbh ABCD 

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Xét hbh APCQ có

IA=IC  (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng

c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O

10 tháng 3 2021

Cảm ơn bạn

 

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html