K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2023

Chiều rộng của mảnh đất là:

150 : 3 = 50 (m)

Tổng chiều dài và chiều rộng :

56 x 2 = 112 (m)

Chiều dài :

112 - 50 = 62 (m)

Diện tích :

62 x 50 = 3 100 (m2)

Đs....

đs...

1 tháng 1 2023

Trun bình cộng của thửa đất hình chữ nhật là 56m . Tính diện tích hình chữ nhật đó, biết rằng nếu tăng chiều dài 3m thì diện tích tăng thêm 150m vuông 

11 tháng 7 2018

Gọi chiều rộng của thửa đất là x (m) (x > 2)

Nửa chu vi của thửa đất là: 56:2 = 28(m)

Chiều dài của thửa đất là 28 – x (m)

Diện tích của thửa đất là x(28 – x) (m2)

Khi tăng chiều dài lên 4m, giảm chiều rộng đi 2m ta có diện tích là

(x – 2)(28 – x + 4) = (x – 2)(32 – x) ( m 2 )

Khi đó diện tích tăng thêm 8 m 2  nên ta có phương trình.

x(28 – x) + 8 = (x – 2)(32 – x))

⇔ 28 x – x 2 + 8 = 34 x – x 2 – 64

⇔ 6x = 72 ⇔ x = 12 (tmđk)

Vậy chiều rộng của thửa đất là 12m, chiều dài thửa đất là 28 – 12 = 16m.

9 tháng 2 2019

2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)

Từ đề bài,suy ra a + b = 28 m

Suy ra a = 28 - b.

Suy ra diện tích là b(28-b) 

Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)

\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)

\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)

\(\Leftrightarrow34b-64=28b+8\)

\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)

Suy ra chiều dài là: 28 - b = 28 - 12 = 16

Vậy ...

9 tháng 2 2019

giải giúp mình vs ạ

11 tháng 3 2016

gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)

diện tích thửa ruộng là x.y (m2)

nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy

nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy 

từ đó ta tìm được diện tích là 308m2

4 tháng 1 2015

Diện tích thửa ruộng đó : 880 m2

20 tháng 2 2016

880m2 la dien h thua ruong

yen tam,bai nay minh thi tren violympic roi

AH
Akai Haruma
Giáo viên
31 tháng 7

Lời giải:

Gọi chiều rộng thửa đất đó là $a$ (m) thì chiều dài là $a+8$ (m) 

Diện tích ban đầu: $a\times (a+8)$

Khi tăng cả chiều rộng và chiều dài thêm 4m thì diện tích là:

$(a+4)\times (a+8+4)=(a+4)\times (a+12)$

Theo bài ra ta có:

$(a+4)\times (a+12)-a\times (a+8)=264$

$(a\times a+12\times a+4\times a+48)-(a\times a+8\times a)=264$

$(a\times a+16\times a+48)-(a\times a+8\times a)=264$
$8\times a+48=264$
$8\times a=216$

$a=216:8=27$ 

Diện tích thửa đất: $a\times (a+8)=27\times (27+8)=945$ (m2)

8 tháng 2 2022

Tham khảo

https://hoidap247.com/cau-hoi/195163

5 tháng 2 2021

Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m) 

Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m : 

( 3a - 5 ) - ( a+ 3 ) = 20 

=> a = 14

Diện tích thửa ruộng : 

S = 14 x 3 x 14 = 588 (m2)

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))

Vì chiều dài gấp ba lần chiều rộng nên ta có phương trình: a=3b(1)

Vì khi tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m nên ta có phương trình:

\(\left(a-5\right)-\left(b+3\right)=20\)

\(\Leftrightarrow a-5-b-3-20=0\)

\(\Leftrightarrow a-b-28=0\)

\(\Leftrightarrow a-b=28\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a=3b\\a-b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-3b=0\\a-b=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2b=-28\\a-3b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=14\\a=3\cdot14=42\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài và chiều rộng của thửa ruộng lần lượt là 42m và 14m

Diện tích thửa ruộng là: \(42\cdot14=588\left(m^2\right)\)

 Gọi chiều dài thửa ruộng là \(x( m) (x>5)\)

 Gọi chiều rộng thửa ruongj là \(y ( m) (y >0)\)

 Theo điều kiện đầu ta có phương trình \(x - 3y =0\)(1)

Theo điều kiện sau ta có phương trình \((x-5)-(y+3) =20 \) 

                                                              ⇒ \(x-5-y-3=20\)

                                                               ⇔\(x-y=28\)(2)

 Từ 1 và 2 ta có hệ \(\left\{{}\begin{matrix}x-3y=0\\x-y=28\end{matrix}\right.\)

                               ⇔\(\left\{{}\begin{matrix}x=42\left(tm\right)\\y=14\left(tm\right)\end{matrix}\right.\)

 ⇒ Diện tích thửa ruộng là 14.42=588(m)

5 tháng 2 2021

Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m) 

Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m : 

( 3a - 5 ) - ( a+ 3 ) = 20 

=> a = 14

Diện tích thửa ruộng : 

S = 14 x 3 x 14 = 588 (m2)