\(-1-\frac{1}{2}-\frac{1}{4}-.....\frac{1}{1024}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
\(=1-\frac{1}{1024}\)
\(=\frac{1023}{1024}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}.\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
<=> \(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}+\frac{1}{512}\)
<=> \(2A-A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{256}+\frac{1}{512}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}-\frac{1}{1024}\)
<=> \(A=1-\frac{1}{1024}\)
<=> \(A=\frac{1023}{1024}\)
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
=>\(2A=-2-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\)
=>\(2A-A=\left(-2-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\right)-\left(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
=>\(A=-2+\frac{1}{1024}\)
Đặt \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-...-\dfrac{1}{1024}\)
\(\Leftrightarrow-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
\(\Leftrightarrow-\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{11}}\)
\(\Leftrightarrow A\cdot\dfrac{1}{2}=\dfrac{1}{2^{11}}-1\)
hay \(A=\dfrac{2\cdot\left(1-2^{11}\right)}{2^{11}}=\dfrac{1-2^{11}}{2^{10}}\)
Ta có:
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=-1+\left(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(=-1+\left(-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\right)\)
\(=-1+\frac{-1023}{1024}\)
\(=-\frac{2047}{1024}\)
1+1/2/+1/4+1/8+...+1/1024
=1+(1-1/2)+(1/2-1/4)+(1/4-1/8)+...(1/512-1/1024)
=1+1-1/2+1/2-1/4+1/4-1/8+...+1/512-1/1024
=1+1-1/1024
=2-1/1024
=2047/1024
Ta có: - 1 - 1/2 - 1/4 - ... - 1/1024
= (0 - 1 + 1 - 1/2 + 1/2 - 1/4 + ... + 1/512 - 1/1024) - 2
= (0 - 1/1024) - 2
= -1/1024 - 2
= - 2049 / 1024
Đặt \(S=-1-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{1024}\)
\(S=-\left(1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{1024}\right)\)
\(S\cdot2=-\left(1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{1024}\right)\cdot2\)
\(S\cdot2=-\left(2+1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\right)\)
\(S\cdot2-S=-\left(2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}-1-\frac{1}{2}-\frac{1}{4}-....-\frac{1}{1024}\right)\)
\(S=-\left(2-\frac{1}{1024}\right)\)
\(S=-\frac{2047}{1024}\)
Vậy kết quả của phép tính trên là \(-\frac{2047}{1024}\)