9*[2016-x]=2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9\times\left(2016-x\right)=2016\)
\(2016-x=2016:9\)
\(2016-x=224\)
\(x=2016-224\)
\(x=1792\)
chúc bn hok tốt
9 x ( 2016 - x ) = 2016
2016 - x = 2016 : 9
2016 - x = 224
x = 2016 - 224
x = 1792
Vậy x = 1792
Chúc bạn học tốt !!!
9 x ( 2016 - a ) = 2016
2016 - a = 2016 : 9
2016 - a = 224
a = 2016 - 224
a = 1792
9 x ( 2016 - x ) = 2016
2016 - x = 2016 : 9
2016 - x = 224
x = 2016 - 224
x = 1792
Nho an dung nha Pham Chau Anh, bai minh trinh bay chuan 100%
#)Giải :
3 x 2016 + 9 x 2016 + 20 x 2016 + 28 x 2016 + 38 x 2016 + 2016 + 2016
= ( 3 + 9 + 20 + 28 + 38 + 1 + 1 ) x 2016
= 100 x 2016
= 201600
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
\(P=\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{\left(3^{2016}-6^{2016}\right)+\left(9^{2016}-12^{2016}\right)+\left(15^{2016}-18^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}\right)+3^{2016}\left(3^{2016}-4^{2016}\right)+3^{2016}\left(5^{2016}-6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}{-\left(1^{2016}-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}\)
\(=-3^{2016}\).
Vậy \(P=-3^{2016}\)
Ta có :
\(A=\dfrac{2016^9+3}{2016^9-1}=\dfrac{2016^9-1+4}{2016^9-1}=\dfrac{2016^9-1}{2016^9-1}+\dfrac{4}{2016^9-1}=1+\dfrac{4}{2016^9-1}\)
\(B=\dfrac{2016^9}{2016^9-4}=\dfrac{2016^9-4+4}{2016^9-4}=\dfrac{2016^9-4}{2016^9-4}+\dfrac{4}{2016^9-4}=1+\dfrac{4}{2016^9-4}\)
Vì \(1+\dfrac{4}{2016^9-1}< 1+\dfrac{4}{2016^9-4}\Rightarrow A< B\)
là sao levanan
9x[2016-x]=2016
2016-x=224 => x=1792
2016-x=-224 => x=2240