K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

f(x)= x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1

f(x)= x^2017 - (2017 - 1)x^2016 - (2017 - 1)x^2015 - ... - (2017 - 1)x +1

Với x=2017 ta có :

f(x)= x^2017 - (x - 1)x^2016 - (x-1)x^2015 - ... - (x - 1)x +1

f(x)= x^2017 - x^2017 +x^2016 - x^2016 +...+ x^2 - x^2 + x + 1

f(x)= x + 1

Thay x =2017 vào f(x) ta có :

f(2017) = 2017 +1 = 2018

4 tháng 1 2017

Theo đề bài ta có

\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)

Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)

\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)

\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)

\(\Rightarrow f\left(x\right)=x-1\)

\(\Rightarrow f\left(2015\right)=2015-1=2014\)

Vậy f(2015)=2014

24 tháng 4 2017
Đặt g(x)=f(x)-x-1 vì f(x) bậc 3 nên g(x) cũng bậc ba. Ta có g(2015)=g(2016)=0 Nên g(x)=(x-2015)(x-2016)(ax+b) suy ra f(x)=(x-2015)(x-2016)+x+1. Từ điều kiện f(2014)-f(2017)=3 suy ra a=-1, b tùy ý
8 tháng 8 2016

Bài 2 :

b) x/y = 9/7 => x/9 = y/7 => x/27 = y/21    (1)

y/f = 3/7  => y/3 = f/7  => y/21 = f/49   (2)

Từ (1) và (2) => x/27 = y/21 = f/49 

Áp dụng t/c của dãy tỉ số bằng nhau:

(tự làm)

c) x/y = 7/20 => x/7 = y/20       (1)

y/f= 5/8 => y/5 = f/8 => y/20 = f/32    (2)

Từ (1) và (2) => x/7 = y/20 = f/32 

=> 2x/14 = 5y /100 = 2f/64 

Áp dụng t/c của dãy tỉ số bằng nhau:

(phần còn lại......tự xử)

5 tháng 7 2016

Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)

Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)

Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)

\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)

\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)

Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).

2 tháng 3 2017

Ta có :

\(f\left(0\right)=a.0^2+b.0+c=c=2015\)

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=2016\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=2017\)

\(a+b+2015=2016\Rightarrow a+b=1\)

\(a-b+2015=2017\Rightarrow a-b=2\)

Cộng vế với vế ta được :\(\left(a+b\right)+\left(a-b\right)=1+2\)

\(\Leftrightarrow2a=3\Rightarrow a=\frac{3}{2}\)

\(\Rightarrow\frac{3}{2}+b=1\Rightarrow b=1-\frac{3}{2}=-\frac{1}{2}\)

\(\Rightarrow f\left(-2\right)=\frac{3}{2}.\left(-2\right)^2+\left(-\frac{1}{2}\right).\left(-2\right)+2015\)

\(=\frac{3}{2}.4+1+2015\)

\(=6+1+2015\)

\(=2022\)

Vậy \(f\left(-2\right)=2022\)