4x(x-2019)-x+2019=0 Tìm x:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow3x^2+3x-2x^2-4x=-1-x\Leftrightarrow x^2=-1\left(\text{vô nghiệm}\right)\)
Vậy: ...
\(b,PT\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: ...
\(c,PT\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: ...
\(d,PT\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy: ...
\(e,PT\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy: ...
\(f,PT\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\Leftrightarrow x=\pm\dfrac{3}{5}\)
Vậy: ...
câu c sao tính ra vậy đc vậy k hiểu giải thích hộ e đi 36 đâu mất òi
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
a/ \(4x\left(x-2019\right)-x+2019=0\)
\(\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2019=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy..
b/ \(3x\left(2x-3\right)=6-4x\)
\(\Leftrightarrow3x\left(2x-3\right)-2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy..
a, x2(x - 3) + 12 - 4x = 0
<=> x2(x - 3) + 4(3 - x) = 0
<=> x2(x - 3) - 4(x - 3) = 0
<=> (x - 3)(x2 - 4) = 0
<=> x - 3 = 0 hoặc x2 - 4 = 0
<=> x = 3 x2 = 4
<=> x = 3 x = 2 hoặc x = -2
b, 2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x + 5 = 0 hoặc 2 - x = 0
<=> x = -5 x = 2
c, 2x(x + 2019) - x - 2019 = 0
<=> 2x(x + 2019) - (x + 2019) = 0
<=> (x + 2019)(2x - 1) = 0
<=> x + 2019 = 0 hoặc 2x - 1 = 0
<=> x = -2019 2x = 1
<=> x = -2019 x = 1/2
\(Th1:x-2019>0\)
\(x-2019-x+2019=0\)
\(0x=0\)
Vậy \(|x-2019|-x+2019=0\)với tất cả giá trị x
\(th2:x-2019< 0\)
\(-x+2019-x+2019=0\)
\(\Rightarrow2x=4038\)
\(\Rightarrow x=2019\)
4x ( x- 2019 ) - x + 2019 = 0
4 x ( x-2019) - ( x - 2019) = 0
( x - 2019)( 4x - 1) = 0
\(\left[{}\begin{matrix}x-2019=0\\4x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2019\\4x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Kết luận : \(x\)\(\in\) { \(\dfrac{1}{4}\); 2019}
\(4x\times\left(x-2019\right)-x+2019=0\)
\(4x\times\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(4x-1\right)\times\left(x-2019\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=0\\x-2019=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=0+1\\x=0+2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=1\\x=2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:4\\x=2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=2019\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{4};x=2019\)