Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)
\(\Rightarrow4\left(x^2+y^2\right)\ge8\)
Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)
Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
\(P=x^2y^2+1+1+\frac{1}{x^2y^2}=x^2y^2+2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}\)
\(\ge x^2y^2+\frac{1}{256x^2y^2}+2+\frac{255}{256.\left[\frac{\left(x+y\right)^2}{4}\right]^2}\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+2+\frac{255}{256.\frac{1}{16}}\)
\(=\frac{1}{8}+2+\frac{255}{16}=\frac{289}{16}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Lâu rồi không show cách này:)
Sửa đề: \(M=4x^2-3x+\frac{1}{4x}+2017\)
Ta có: \(M=\frac{\left(4x+1\right)\left(2x-1\right)^2}{4x}+2017\ge2017\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
Em kiểm tra lại đề nhé! Hàm số của biểu thức : \(M=4^2-3x+\frac{1}{4x}+2017\) có đồ thị đi xuống nên sẽ không tồn tại GTNN em nhé!
Áp dụng BĐT Minicopski ta có:
\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)
\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)
Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)
vừa với giải xong giờ lại giải lại :v
\(M=4x^2-3x+\frac{1}{4x}+2011\)
\(=\left(2x-1\right)^2+x+\frac{1}{4x}+2010\)
Theo bđt Cauchy : \(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)
Suy ra : \(M\ge1+2010=2011\)
Vậy \(Min_M=2011\)khi \(x=\frac{1}{2}\)