Cho hình vuông ABCD có độ dài đường chéo bằng 12cm.M là một điểm bắt kì trên cạnh AB,O là giao điểm hai đường chéo.Đường thẳng qua O và vuông góc với OM cắt BC tại N.Diện tích tứ giác OMBN bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(OP⊥AB\)
\(OQ⊥BC\)
Xét tứ giác \(PBQO\) có 3 góc vuông nên là hính chữ nhật. (HCN)
HCN \(PBQO\) có BO là đường phân giác của góc B nên là hình vuông.
\(\Rightarrow OP=OQ\) và \(\widehat{POQ}=90^o\)
\(\Rightarrow\widehat{POQ}=\widehat{MON}\left(=90^o\right)\)
\(\Rightarrow\widehat{POQ}-\widehat{PON}=\widehat{MON}-\widehat{PON}\)
\(\Rightarrow\widehat{NOQ}=\widehat{MOP}\)
Từ đó bạn tự chứng minh \(\Delta NOQ=\Delta MOP\left(g.c.g\right)\)
\(\Rightarrow S_{NOQ}=S_{MOP}\)
\(\Rightarrow S_{NOQ}+S_{OPBN}=S_{MOP}+S_{OPBN}\)
\(\Rightarrow S_{OMBN}=S_{PBQO}\)
\(S_{PBQO}=\frac{BO.QP}{2}=BO^2=\left(\frac{BD}{2}\right)^2=6^2=36\left(cm^2\right)\)
Vậy ...
a: Xét ΔDOM và ΔBON có
góc DOM=góc BON
OD=OB
góc ODM=góc OBN
=>ΔDOM=ΔBON
=>DM=BN
mà DM//BN
nên BMDN là hình bình hành
b: Xét ΔEAM vuông tại A và ΔNBE vuông tại B có
EA=NB
AM=BE
Do đó: ΔEAM=ΔNBE
=>EM=EN
=>ΔEMN cân tại E
mà EO là trung tuyến
nen EO vuông góc với MN