Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N P Q
Kẻ \(OP⊥AB\)
\(OQ⊥BC\)
Xét tứ giác \(PBQO\) có 3 góc vuông nên là hính chữ nhật. (HCN)
HCN \(PBQO\) có BO là đường phân giác của góc B nên là hình vuông.
\(\Rightarrow OP=OQ\) và \(\widehat{POQ}=90^o\)
\(\Rightarrow\widehat{POQ}=\widehat{MON}\left(=90^o\right)\)
\(\Rightarrow\widehat{POQ}-\widehat{PON}=\widehat{MON}-\widehat{PON}\)
\(\Rightarrow\widehat{NOQ}=\widehat{MOP}\)
Từ đó bạn tự chứng minh \(\Delta NOQ=\Delta MOP\left(g.c.g\right)\)
\(\Rightarrow S_{NOQ}=S_{MOP}\)
\(\Rightarrow S_{NOQ}+S_{OPBN}=S_{MOP}+S_{OPBN}\)
\(\Rightarrow S_{OMBN}=S_{PBQO}\)
\(S_{PBQO}=\frac{BO.QP}{2}=BO^2=\left(\frac{BD}{2}\right)^2=6^2=36\left(cm^2\right)\)
Vậy ...
1. Lớp 8 chưa học tứ giác nội tiếp nên có thể CM như sau:
Xét tam giác $KAB$ và $KCH$ có:
$\widehat{K}$ chung
$\widehat{KBA}=\widehat{KHC}=90^0$
$\Rightarrow \triangle KAB\sim \triangle KCH$ (g.g)
$\Rightarrow \frac{KA}{KC}=\frac{KB}{KH}\Rightarrow KA.KH=KB.KC$
Xét tam giác $KAC$ có $AB,CH$ là 2 đường cao giao nhau tại $M$ nên $M$ là trực tâm tam giác $KAC$
$\Rightarrow KM\perp AC$. Mà $AC\perp BD$ nên $KM\parallel BD$.
2.
$OE\parallel DC$ nên theo định lý Talet:
$\frac{OF}{FC}=\frac{OE}{DC}$
Mà $OE=OC$ (như bạn Phan Linh Nhi đã cm) nên $\frac{OF}{FC}=\frac{OC}{DC}=\frac{\sqrt{2}}{2}$ (do $ODC$ là tam giác vuông cân tại $O$)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD