biết x/3=y/5=z/2và 2x-y+4z=27. Khi đó x,y,z lần lượt là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}.\)VÀ \(2x-y+z=27\)
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}=\frac{6x-12y}{9}\)\(=\frac{8z-6x}{4}=\frac{12y-8z}{16}\)
\(=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}\)\(=\frac{0}{29}=0\)
\(\Rightarrow2x=4y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\Rightarrow4z=3x\Rightarrow\frac{z}{3}=\frac{x}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}\)\(=\frac{27}{9}=3\)
\(\frac{x}{4}=3\Rightarrow x=12\)
\(\frac{y}{2}=3\Rightarrow y=6\)
\(\frac{z}{3}=3\Rightarrow z=9\)
VẬY X = 12, Y = 6, Z = 9
\(x,y,z\)lần lượt tỉ lệ với \(2,3,4\)nên \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x-2y-4z}{3.2-2.3-4.4}=\frac{96}{-16}=-6\)
\(\Leftrightarrow\hept{\begin{cases}x=-6.2=-12\\y=-6.3=-18\\z=-6.4=-24\end{cases}}\)
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
Bài 3 :
\(x=3y=2z\)
\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)
\(\Rightarrow x=\frac{k}{3}\)
\(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)
\(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{6x-12y}{9}=\frac{8z-6x}{4}=\frac{12y-8z}{16}=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}=\frac{\left(6x-6x\right)-\left(12y-12y\right)+\left(8z-8z\right)}{29}=0.\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}.\)
\(\Rightarrow\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}\) và \(2x-y+z=27.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}=\frac{27}{9}=3.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=3\Rightarrow x=3.4=12\\\frac{y}{2}=3\Rightarrow y=3.2=6\\\frac{z}{3}=3\Rightarrow z=3.3=9\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;6;9\right).\)
Chúc bạn học tốt!
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}\) => \(\dfrac{2x}{6}=\dfrac{y}{5}=\) \(\dfrac{4z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{6}\) = \(\dfrac{y}{5}\) = \(\dfrac{4z}{8}\)= \(\dfrac{2x-y+4z}{6-5+8}\) = \(\dfrac{27}{9}\) = 3
\(x\) = 3.6:2= 9
y=3.5 = 15
z = 3.8:4 = 6