K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

Ta có : \(\frac{15n+8}{3n+4}=\frac{5\left(3n+4\right)-12}{3n+4}=5-\frac{12}{3n+3}\) 

Để phân số trên có giái trị nhỏ nhất => \(\frac{12}{3n+4}\) lớn nhất 

=> 3n+4 nhỏ nhất 

 xét :  3n+4 là số nguyên âm mà không có số nguyên âm nhỏ nhất => loại 

xét : 3n+4 là số nguyên dương 

=> 3n+4 = 1

=> 3n=-3 

=> n= -1 

Vậy để phân số trên có giái trị nhỏ nhất thì n = -1

9 tháng 3 2019

Kết hợp điều kiện đề bài

Vậy có 2018 - 7 + 1 = 2012    giá trị của a thỏa mãn.

Chọn C.

6 tháng 2 2019

Để A là số nguyên thì 3n+5 chia hết cho n+4

=>3n+12-7 chia hết cho n+4

=>n+4 thuộc {1;-1;7;-7}

=>n thuộc {-3;-5;3;-11}

27 tháng 11 2016

\(A=2n:\frac{3n+1}{3}=2n.\frac{3}{3n+1}=\frac{6n}{3n+1}=\frac{6n+2-2}{3n+1}=\frac{2\left(3n+1\right)-2}{3n+1}\)

\(=\frac{2\left(3n+1\right)}{3n+1}-\frac{2}{3n+1}=2-\frac{2}{3n+1}\)

A nguyên <=> \(\frac{2}{3n+1}\) nguyên <=> 2 chia hết cho 3n+1

<=>\(3n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

<=>\(3n\in\left\{-3;-2;0;1\right\}\)

<=>\(n\in\left\{-1;\frac{-2}{3};0;\frac{1}{3}\right\}\)

Vì n nguyên nên  \(n\in\left\{-1;0\right\}\)

27 tháng 11 2016

A=\(=\frac{2n.3}{3n+1}=\frac{2.3n+2-2}{3n+1}=2-\frac{2}{3n+1}.\) 

3n+1=+-1,+-2

n=0

NV
6 tháng 1 2024

\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)

A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên

\(\Rightarrow n-2=Ư\left(7\right)\)

\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n=\left\{-5;1;3;9\right\}\)

24 tháng 7 2019

\(B=\frac{6n-5}{3n+1}\inℤ\)

=> 6n - 5 ⋮ 3n + 1

=> 6n + 2 - 7 ⋮ 3n + 1

=> 3(3n + 1) - 7 ⋮ 3n + 1

=> 7 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(7)

=> 3n + 1 thuộc {-1; 1; -7; 7}

=> 3n thuộc {-2; 0; -8;  6}

=> n thuộc {0; 2} vì n thuộc Z

24 tháng 7 2019

a) Để \(B\inℤ\)

\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)

\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)

Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)

nên \(-7⋮3n+1\)

\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)

\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(3n+1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(0\)\(-\frac{2}{3}\)\(2\)\(-\frac{8}{3}\)

Vậy \(n\in\left\{0;2\right\}\)

11 tháng 3 2016

Mình sẽ làm chi tiết như sau nếu bạn ko hiểu thì tùy

\(C=\frac{6n-1}{3n+2}=\frac{\left(6n+4\right)-5}{3n+2}\)

Để C là số nguyên thì \(3n+2\inƯ\left(-5\right)\)

\(\Rightarrow3n+2=-5;3n+2=5;3n+2=1;3n+2=-1\)

Giải từng trường hợp ra thì sẽ có n thôi nhé

11 tháng 8 2016

mk giải câu a thui nha

để \(\frac{6n-1}{3n+2}\)là số nguyên thì:

    (6n-1) sẽ phải chia hết cho(3n+2)

mà (3n+2) chja hết cho (3n+2)

=> 2(3n+2) cx sẽ chia hết cho (3n+2)

<=> (6n+4) chia hết cho (3n+2)

mà (6n-1) chia hết cho (3n+2)

=> [(6n+4)-(6n-1)] chja hết cho (3n+2)

      (6n+4-6n+1) chja hết cho 3n+2

           5 chia hết cho3n+2

=> 3n+2 \(\in\){1,5,-1,-5}

ta có bảng

3n+2

1   

-1-5

3n 

371-3
n1  

-1

vậy....
 

22 tháng 3 2016

bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!