\(\frac{6n-5}{3n+1}\)

a)Tìm các số ngyên N để A có giá trị nguyên

b)Tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

\(B=\frac{6n-5}{3n+1}\inℤ\)

=> 6n - 5 ⋮ 3n + 1

=> 6n + 2 - 7 ⋮ 3n + 1

=> 3(3n + 1) - 7 ⋮ 3n + 1

=> 7 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(7)

=> 3n + 1 thuộc {-1; 1; -7; 7}

=> 3n thuộc {-2; 0; -8;  6}

=> n thuộc {0; 2} vì n thuộc Z

24 tháng 7 2019

a) Để \(B\inℤ\)

\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)

\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)

Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)

nên \(-7⋮3n+1\)

\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)

\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(3n+1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(0\)\(-\frac{2}{3}\)\(2\)\(-\frac{8}{3}\)

Vậy \(n\in\left\{0;2\right\}\)

14 tháng 3 2017

M=(6n+4-5):(3n+2)=2-5:(3n+2)

a) để M nguyên thì (3n+2) phải là ước của 5

=> 3n+2={-5; -1; 1; 5}

+/ 3n+2=-5 => n=-7/3 (loại)

+/ 3n+2=-1 => n=-1; M=7

+/ 3n+2=1 => n=-1/3 loại

+/ 3n+2=5 => n=1; M=-3

Đs: n={-1; 1}

b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0

M​​min=2-5/2=-1/2

5 tháng 7 2017

A có giá trị nguyên \(\Leftrightarrow\frac{6n}{3n+2}\) có giá trị nguyên 

\(\Rightarrow\frac{2\left(3n+2\right)}{3n+2}=2+\frac{-2}{3n+2}\) có giá trị nguyên

\(\Rightarrow3n+2\inƯ\left(-2\right)=\left\{1,-1,2,-2\right\}\)

Ta có bảng sau:

3n+21-12-2
n-0,33-10-1,33

Vì bạn ko cho điều kiện của n nên

n={ -0,33; -1; 0;-1,33}

Còn phần B mik ko làm nha

ai thấy đúng thì nhấn vào chữ" đúng" hộ mik nha

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

11 tháng 8 2016

mk giải câu a thui nha

để \(\frac{6n-1}{3n+2}\)là số nguyên thì:

    (6n-1) sẽ phải chia hết cho(3n+2)

mà (3n+2) chja hết cho (3n+2)

=> 2(3n+2) cx sẽ chia hết cho (3n+2)

<=> (6n+4) chia hết cho (3n+2)

mà (6n-1) chia hết cho (3n+2)

=> [(6n+4)-(6n-1)] chja hết cho (3n+2)

      (6n+4-6n+1) chja hết cho 3n+2

           5 chia hết cho3n+2

=> 3n+2 \(\in\){1,5,-1,-5}

ta có bảng

3n+2

1   

-1-5

3n 

371-3
n1  

-1

vậy....
 

22 tháng 3 2016

bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!