K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2022

x−3=y(x+2)
⇔x+2−2−3=y(x+2)
⇔x+2−5=y(x+2)
⇔x+2−y(x+2)−5=0
⇔(x+2)(1−y)=5 
Suy ra x+2, 1−ylà ước của 5. 
Do x  là các số tự nhiên nên  x + 2 > 0 vì vậy 1 - y > 0.
mặt khác 1- y là ước của 5 và y là số tự nhiên nên 1−y=1⇔y=0.
Suy ra x = 3.
Vậy x = 3 , y = 0 là các giá trị cần tìm.

11 tháng 12 2022

thks

 

2 tháng 11 2023

Áp dụng công thức là ra😎

7 tháng 2 2020

Câu b trc nhé

M = | x - 4 | + 2021

Ta có \(\left|x-4\right|\ge0\forall x\)

\(\Rightarrow\left|x-4\right|+2021\ge2021\forall x\)

\(\Rightarrow M\ge2021\forall x\)

Dấu "= " xảy ra \(\Leftrightarrow\left|x-4\right|=0\)

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

Vậy Min M = 2021 \(\Leftrightarrow x=4\)

Tại s lại là tìm max ạ

7 tháng 2 2020

(x - 1)(y + 3) = - 4

=> x - 1; y + 3 thuộc Ư(-4)

ta có bảng :

x-11-1-22-44
y+3-442-21-1
x20-13-35
y-71-1-5-2-4
14 tháng 8 2023

a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.

14 tháng 8 2023

e phải tách ra nhé 

18 tháng 9 2023

mn nhanh lên ạaa!!!

Đề bài cụ thể là gì vậy ạ

18 tháng 9 2023

Cô làm rồi mà em 

18 tháng 9 2023

TA CÓ 0=02

⇒X-11+Y+X+4-Y=0

⇒(X+X)+(-11+4)+(Y-Y)=0

⇒2X+(-7)+0=0

⇒2X=0-(-7)

⇒2X=7

⇒X=7:2

⇒X=3,5

VẬY X =3,5

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)

Vậy ....

11 tháng 9 2021

= y x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 450

= y x 45 = 450

y = 10

Nho t ick cho mik

11 tháng 9 2021

trình bày cách giải giúp mình ạ!

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

24 tháng 2 2020

Xy=2(x+y)

<=> (xy-2x)-(2y-4)=4

<=>x(y-2)-2(y-2)=4

<=>(X-2)(y-2)=4=1.4=2.2

Có x,y là số nguyên dương nên x-2,y-2 là số nguyên dương lớn hơn hoặc bằng-2 nên ta có

Th1: x-2=1,y-2=4

=> X=3,y=6.

Th2: x-2=4,y-2=1

=> X=6,y=3.

Th3: x-2=y-2=2

=> X=y=4.