Gải PT \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x+1=\dfrac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
\(\Leftrightarrow\)\(\left(x^2-3x+1\right)^2=\dfrac{25}{3}\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\)\(x^4-6x^3+11x^2-6x+1=\dfrac{25}{3}x^4+\dfrac{25}{3}x^2+\dfrac{25}{3}\)
\(\Leftrightarrow11x^4+9x^3-4x^2+9x+11=0\)
\(\Leftrightarrow\left(x+1\right)\left(11x^3-2x^2-2x+11\right)=0\)
\(\Rightarrow x=-1\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)
\(\Leftrightarrow\dfrac{x^2+12-16}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{x+2}{\sqrt{x^2+12}+4}-3-\dfrac{x+2}{\sqrt{x^2+5}+3}\right)=0\)
\(\Leftrightarrow x=2\) vì ....................................................................<0.
Dễ thấy, nếu x < 0:
VT=√x2+5+3x<√x2+12<√x2+12+5VT=x2+5+3x<x2+12<x2+12+5.
Phương trình vô nghiệm. Vậy x≥0x≥0.
Phương trình ban đầu tương đương:
(√x2+5−3)−(√x2+12−4)+3x−6=0(x2+5−3)−(x2+12−4)+3x−6=0
⇔x2−4√x2+5+3−x2−4√x2+12+4+3(x−2)=0⇔x2−4x2+5+3−x2−4x2+12+4+3(x−2)=0
⇔(x−2)[x+2√x2+5+3−x+2√x2+12+4+3]=0⇔(x−2)[x+2x2+5+3−x+2x2+12+4+3]=0
⇔⎡⎢⎣x=2x+2√x2+5+3−x+2√x2+12+4+3=0(2)⇔[x=2x+2x2+5+3−x+2x2+12+4+3=0(2)
Ta có:
(2)⇔(x+2)[1√x2+5+3−1√x2+12+4]+3=0(2)⇔(x+2)[1x2+5+3−1x2+12+4]+3=0
⇔(x+2).√x2+12−√x2+5+1(√x2+5+3)(√x2+12+4)=0⇔(x+2).x2+12−x2+5+1(x2+5+3)(x2+12+4)=0
Do x > 0 nên VT > 0 = VF. Do đó phương trình (2) vô nghiệm.
Vậy phương trình ban đầu có nghiệm duy nhất x = 2.
a, ĐKXĐ:...
\(\sqrt{5x+10}=8-x\\ \Leftrightarrow5x+10=64-16x+x^2\\ \Leftrightarrow x^2-21x+54=0\)
.....
b, ĐKXĐ:...
\(\sqrt{4x^2+x-12}=3x-5\\ \Leftrightarrow4x^2+x-12=9x^2-30x+25\\ \Leftrightarrow5x^2-31x+37=0\)
.....
Để bình 8 - x lên thì cần phải có ĐK x ≤ 8 nữa nhé! Đi thi ko có đk coi như bỏ :)))
kq 2 nha bn ko biet dung ko nua mik moi hc lp 6
@Khôi : Mới học lớp 6 mà làm được sao =))))