Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x+1=\dfrac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
\(\Leftrightarrow\)\(\left(x^2-3x+1\right)^2=\dfrac{25}{3}\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\)\(x^4-6x^3+11x^2-6x+1=\dfrac{25}{3}x^4+\dfrac{25}{3}x^2+\dfrac{25}{3}\)
\(\Leftrightarrow11x^4+9x^3-4x^2+9x+11=0\)
\(\Leftrightarrow\left(x+1\right)\left(11x^3-2x^2-2x+11\right)=0\)
\(\Rightarrow x=-1\)
c) Bài này nghiệm đẹp nên cứ yên tâm bình phương:) Còn em lâu rồi ko đi khủng bố tinh thần người đọc:P
ĐK: \(x\ge-\frac{1}{16}\)
PT \(\Leftrightarrow x^2-x-2+\frac{2\sqrt{1+16x}}{9}\left(\sqrt{1+16x}-9\right)-\frac{2\left(1+16x\right)}{9}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}\right)+\frac{2\sqrt{1+16x}}{9}\left(\frac{16\left(x-5\right)}{\sqrt{1+16x}+9}\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}+\frac{32\sqrt{1+16x}}{9\left(\sqrt{1+16x}+9\right)}\right)=0\)
Cái ngoặc to luôn dương.
Do đó x = 5
P/s: Em đánh máy lỗi chỗ nào thì nhắn hộ em:D
a)ĐK:...
Đặt \(\sqrt{x+5}=a;\sqrt{3-x}=b\ge0\Rightarrow a^2+b^2=8\)
Theo đề bài ta có hệ \(\left\{{}\begin{matrix}a+b-2\left(ab+1\right)=0\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b-2ab-2=0\\\left(a+b\right)^2-2ab-8=0\end{matrix}\right.\)
Lấy pt dưới trừ pt trên thu được \(\left(a+b\right)^2-\left(a+b\right)-6=0\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\left(L\right)\end{matrix}\right.\)
Thay a + b = 3 vào pt đầu ta suy ra \(ab=\frac{1}{2}\)
Theo hệ thức Viet đảo: a, b là hai nghiệm của pt:\(t^2-3t+\frac{1}{2}=0\)
\(\Leftrightarrow t\in\left\{\frac{3+\sqrt{7}}{2};\frac{3-\sqrt{7}}{2}\right\}\).Đến đây xét 2 th:
TH1: \(\left\{{}\begin{matrix}a=\frac{3+\sqrt{7}}{2}\\b=\frac{3-\sqrt{7}}{2}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a=\frac{3-\sqrt{7}}{2}\\b=\frac{3+\sqrt{7}}{2}\end{matrix}\right.\) nữa là xong! (em nghĩ vậy thôi chứ ko chắc ở đoạn dùng hệ thức Viet đảo đâu!)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
`ĐK:x>=2`
`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`
`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`
`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`
`+)sqrt{x-2}=sqrt{x+3}`
`<=>x-2=x+3`
`<=>0=5` vô lý
`+)sqrt{x-1}-1=0`
`<=>x-1=1`
`<=>x=2(tm)`.
Vậy `x=2`.
a: =>2x+1=27
=>2x=26
=>x=13
b: =>\(\sqrt[3]{x+5}=x+5\)
=>x+5=(x+5)^3
=>(x+5)(x+4)(x+6)=0
=>x=-5;x=-4;x=-6
c: =>2-3x=-8
=>3x=10
=>x=10/3
d: =>\(\sqrt[3]{x-1}=x-1\)
=>(x-1)^3=(x-1)
=>x(x-1)(x-2)=0
=>x=0;x=1;x=2
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!