Cho 3 số dương a,b,c t/m ab+bc+ca=3abc
tìm GTLN của bt F = \(\frac{1}{a+2b+3c}\)+\(\frac{1}{2a+3b+c}\)+\(\frac{1}{3a+b+2c}\)
giải nhanh dùm mình nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)
cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)
\("="\)khi a=b=c=....
hic :( tự đăng rồi tự giải ra luôn :((( sorry mn
Áp dụng BĐT Svarxơ:
\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\)\(=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}\)\(=\dfrac{36}{a+2b+3c}\)
CMTT: \(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}\ge\dfrac{36}{2a+3b+c}\)
\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}\ge\dfrac{36}{3a+b+2c}\)
Cộng vế theo vế, ta có: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=36F\)
Có: \(ab+bc+ca=3abc\)
Vì a,b,c>0 nên chia cả 2 vế cho abc:
\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=3\)
\(\Rightarrow36F\le18\Leftrightarrow F\le\dfrac{1}{2}\)
Vậy Fmin\(=\dfrac{1}{2}\Leftrightarrow a=b=c=1\)
Lời giải:
Từ \(ab+bc+ac=3abc\Rightarrow \frac{1}{c}+\frac{1}{a}+\frac{1}{b}=3\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)
Hoàn toàn tương tự:
\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)
\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)
Cộng các BĐT vừa thu được ở trên theo vế và rút gọn:
\(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\geq \frac{36}{a+2b+3c}+\frac{36}{b+2c+3a}+\frac{36}{c+2a+3b}\)
\(\Leftrightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36F\)
\(\Leftrightarrow 18\geq 36F\Leftrightarrow F\leq \frac{1}{2}\)
Vậy \(F_{\max}=\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Cứ phải cảnh giác bạn à:
không biết hay vô tình hay hưu ý nữa nhưng các câu hỏi sai xuất hiện rất nhiều
khi hỏi lại, không thấy phải hồi. hay là người hỏi cũng chưa hiểu câu hỏi
Ối,không ngờ đề gắt ~v
Theo Cô si,ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)
Suy ra \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng vào,ta có: \(\frac{1}{a+2b+3c}=\frac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\right)\)
Chứng minh tương tự và cộng theo vế:
\(VT\le\frac{1}{9}\left[\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]\)
\(=\frac{1}{9}\left[3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]=\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Lại có BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng vào,ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\le\frac{1}{12}\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Nhân abc vào mỗi vế : \(VT.abc\le\frac{1}{6}\left(ab+bc+ca\right)=\frac{abc}{6}\)
Chia cả hai vế cho abc (vì a,b,c dương nên abc khác 0): \(VT\le\frac{1}{6}< \frac{3}{16}\)(đpcm)
Cũng không biết đúng hay sai nữa :v
\(abc=ab+bc+ca\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\frac{1}{a+2b+3c}=\frac{1}{a+b+b+c+c+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)=\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
Tương tự:
\(\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}< \frac{3}{16}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)
\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)
\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)
Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)
Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Bạn tham khảo:
Câu hỏi của 원회으Won Hoe Eu - Toán lớp 8 | Học trực tuyến
Hơi tắt 1 xíu ^.^
ko bit
lạy thánh ko biết cũng trả lời rảnh