K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH
Thầy Hùng Olm
Manager VIP
3 tháng 12 2022

\(A=1+\dfrac{1}{2x2}+\dfrac{1}{3x3}+...+\dfrac{1}{50x50}\)

\(A< 1+\dfrac{1}{1x2}+\dfrac{1}{2x3}+...+\dfrac{1}{49x50}\)

\(A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}.+..+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A< 2-\dfrac{1}{50}< 2\left(đpcm\right)\)

12 tháng 5 2023

Ta có:
A=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+......+1/15)+........+ (1/2^99+1/2^99+1+........+1/2^100-1)
(Có 99 nhóm) < 1+2.1/2+2^2.1/2^2+2^3.1/2^3+.....+2^99.1/2^99
=>1+1+1+.......+1 (100 số 1)=100
=>A1+1/2+2.1/2^2+2^2.1/2^3+2^3.1/2^4+.....+2^991/2^100-1-1/2^100 =1+1/2+1/2+1/2+1/2+........+1/2-1/2^100 (100 số 1/2)
=1+100.12-1/2^100
=50+1-1/2^100>50
=>A>50 (2)
Từ (1)và (2)=>50

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

a.

$A=1+3^2+3^4+....+3^{50}$

$3^2A=3^2+3^4+3^6+....+3^{52}$

$\Rightarrow 3^2A-A=(3^2+3^4+3^6+....+3^{52}) - (1+3^2+3^4+....+3^{50})$

$\Rightarrow 8A=3^{52}-1$
$\Rightarrow A=\frac{3^{52}-1}{8}$ (đpcm)

b.

Có: $8A=3^{52}-1=(3^4)^{13}-1=81^{13}-1$

$\Rightarrow 8A+1=81^{13}$ (đpcm)

4 tháng 5 2016

Tính :(1-1/2)*(1-1/3)*(1-1/4)*...*(1-1/99)

16 tháng 4 2015

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}

17 tháng 4 2017

giai thich gio hon duoc ko

18 tháng 4 2023

A = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.....+ \(\dfrac{1}{50^2}\)

A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+......+\(\dfrac{1}{50.50}\)

      1 = 1

 \(\dfrac{1}{2.2}\)  < \(\dfrac{1}{1.2}\)

  \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

..................

\(\dfrac{1}{50.50}\) < \(\dfrac{1}{49.50}\)

Cộng vế với vế với ta có:

A = \(1+\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+....+ \(\dfrac{1}{50.50}\) < 1 + \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{49.50}\)

A < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+......+ \(\dfrac{1}{49}\)\(\dfrac{1}{50}\)

A < 2 - \(\dfrac{1}{50}\) < 2 ( đpcm)