cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
( gợi ý CM :A'O/A'G+B'O/B'G+C'O/C'G =3 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 đường trung tuyến đó là AD,BE,CF.
Vẽ D',E',F' là hình chiếu của M trên BC,AC,AB.
Ta có : \(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{MD'}{GD}+\frac{ME'}{GE}+\frac{MF'}{GF}\)
Đặt \(GD=GE=GF=\frac{h}{3}\)( h là chiều cao của tam giác )
\(\Rightarrow\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{h}{\frac{h}{3}}=3\)
Bạn tham khảo ở phần câu hỏi tương tự nhé.
https://olm.vn/hoi-dap/detail/191084232755.html