A)số nguyên n phải có điều kiện gì để A lá phân số ?
B)tìm số nguyên n để A là số nguyên và cho biết:
Cho biểu thức A=\(\frac{19}{N+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì n thuộc Z và n khác -2
b) Để A là số nguyên thì 19/ n+2 là số nguyên
=> 19 chia hết cho n+2
=> n+2 thuộc Ư(19)
=> n+2 thuộc { -19 ; -1 ; 1 ;19}
=> n thuộc { -21 ; -3 ; -1 ; 17}
Vậy ........
Nếu đúng thì k cho mik nha!! thanks ^^
a)
Để n là P/s thì n ko bằng -2
b)
để n có giá trị số nguyên thì 19 phải chia hết cho n+2 vậy n+2 là Ư của 19
n+2 -19 -1 1 19
n -17 -3 -1 17
a) \(n\ne17\)
b) \(\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)
\(n+2\) | \(n\) |
\(-19\) | \(-21\) |
\(-1\) | \(-3\) |
\(1\) | \(-1\) |
\(19\) | \(17\) |
\(\Rightarrow n\in\left\{-21;-3;-1;17\right\}\)
\(a)\) Để A là phân số thì \(n+2\ne0\)
\(\Rightarrow\)\(n\ne-2\)
\(b)\) Để A là số nguyên thì \(19⋮\left(n+2\right)\)\(\Rightarrow\)\(\left(n+2\right)\inƯ\left(19\right)\)
Mà \(Ư\left(19\right)=\left\{1;-1;19;-19\right\}\)
Suy ra :
\(n+2\) | \(1\) | \(-1\) | \(19\) | \(-19\) |
\(n\) | \(-1\) | \(-3\) | \(17\) | \(-21\) |
Vậy \(n\in\left\{-21;-3;-1;17\right\}\)
Chúc bạn học tốt ~
a, đk n khác 1
b, \(\Rightarrow n-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Ta có: \(A=-\dfrac{4}{n-1}\)
a) Để \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
b) Để \(A\in Z\) thì \(n-1\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4
a, Để A là phân số thì \(n+2\ne0\)hay \(n\ne2\)
Vậy với \(n\ne2\)thì A là phân số.
b, Để A là số nguyên thì \(19⋮n+2\)
hay \(n+2\inƯ\left(19\right)=\left\{\pm1,\pm19\right\}\)
|
Vậy với \(n\in\left\{-21,-3,1,17\right\}\)thì \(A\in Z\)
a,\(\frac{19}{n+2}\) là phân số khi \(19\) không chia hết cho n+2
Giả sử \(19⋮n+2\)
\(\Rightarrow\) \(n+2\in\)Ư(19)
\(\Rightarrow\)\(n\in\left\{-21;-1;1;17\right\}\)
Vậy 19ko chia hết cho n+2 khi\(n\notin\left\{-21;-1;1;17\right\}\)
b, theo câu a ta có A là số nguyên khi \(n\in\left\{-21;-1;1;17\right\}\)