cho một tam giác với ba cạnh lần lượt là a,b,c.Độ dài ba đường phân giác trong của tam giác lần lượt là x,y,z
chứng minh rằng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)lớn hơn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ
Tam giác ABC tương ứng với a,b,c độ dài các cạnh
từ B dựng đường thẳng song song với tia phân giác AD cắt đường thẳng CA tại E,ta có AE = AB = c
Do AD//BE nên \(\frac{x}{BE}=\frac{b}{b+c}\Rightarrow x=\frac{b}{b+c}.BE\)
Trong tam giác ABE ta có : EB < AB + AE = 2c
vì thế \(x< \frac{2bc}{b+c}\Rightarrow\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)
Tương tự : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\); \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cộng lại ta được đpcm
Bài 7 :
( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt )
Ta có :
\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\)
Vậy \(A>10\)
Chúc bạn học tốt ~
Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.
Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với