tìm y biết:
y + 2 × y + 3 × y + 4 × y + ... + 10 × y = 49,5
Tính nhanh :
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}=1\)
\(y-\frac{210}{420}-\frac{70}{420}-\frac{35}{420}-\frac{21}{420}-\frac{14}{430}-\frac{10}{420}=1\)
\(y-\frac{210-70-35-21-14-10}{420}=1\)
\(y-\frac{60}{420}=1\)
\(y-\frac{1}{7}=1\)
\(y=1+\frac{1}{7}\)
\(y=\frac{7}{7}+\frac{1}{7}\)
\(y=\frac{8}{7}\)
a) \(\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{10}{16}+\dfrac{10}{24}\)
\(=\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{5}{8}+\dfrac{5}{12}\)
\(=\left(\dfrac{3}{8}+\dfrac{5}{8}\right)+\left(\dfrac{7}{12}+\dfrac{5}{12}\right)\)
\(=1+1\)
\(=2\)
b) \(\dfrac{4}{6}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{14}{6}\)
\(=\dfrac{2}{3}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{7}{3}\)
\(=\left(\dfrac{2}{3}+\dfrac{7}{3}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)+\left(\dfrac{17}{9}+\dfrac{1}{9}\right)\)
\(=3+2+2\)
\(=7\)
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
Y - 1/2 - 1/6 - 1/12 - 1/20 - 1/30 - 1/42 = 1
Đặt A= - 1/2 - 1/6 - 1/12 - 1/20 - 1/30 - 1/42
\(A=-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\right)\)
\(A=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}\right)\)
\(A=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=-\left(1-\frac{1}{7}\right)\)
\(A=-\frac{6}{7}\).Thay A vào ta có \(Y-\frac{6}{7}=1\Leftrightarrow y=\frac{13}{7}\)
\(y=\frac{1+5+11+19+29+41+55+71+89}{2+6+12+20+30+42+56+72+90}\)
\(y=\frac{1x2-1+2x3-1+3x4-1+4x5-1+5x6-1+6x7-1+7x8-1+8x9-1+9x10-1}{1x2+2x3+3x4+4x5+5x6+6x7+7x8+8x9+9x10}\)
\(y=\frac{\left(1x2+2x3+...+9x10\right)-\left(1+1+1+1+1+1+1+1+1\right)}{1x2+2x3+...+9x10}\)
\(y=\frac{1x2+2x3+...+9x10}{1x2+2x3+...+9x10}-\frac{9}{1x2+2x3+...+9x10}\)
\(y=1-\frac{9}{1x2+2x3+...+9x10}\)