K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

a, Ta có: \(\left|6-2x\right|\ge0\)

=>A = |6 - 2x| - 5 \(\ge\)-5

Dấu "=" xảy ra <=> 6 - 2x = 0 <=> x = 3

Vậy GTNN của A là -5 khi x = 3

b, Ta có: \(\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2y+2\right|\le0\end{cases}}\)

\(\Rightarrow-\left(x+1\right)^2-\left|2y+2\right|\le0\)

\(\Rightarrow B=-\left(x+1\right)^2-\left|2y+2\right|-3\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)

Vậy GTNN của B là -3 khi x = -1 ; y = -1

1 tháng 2 2018

Nhỏ nhất:

D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0

(x + 5)2 = 0

(x + 5)= 02

=> x + 5 = 0

         x   = 0 - 5

         x   = -5

(2y - 6)2 = 0

(2y - 6)2 = 02

=> 2y - 6 = 0

        2y   = 0 + 6

         2y  = 6

            y = 6 : 2

            y = 3

Ta có: D = 0 + 0  + 1 = 1

Lớn nhất:(không có giá trị lớn nhất)

1 tháng 2 2018

GIÚP MÌNH VỚI

LÀM ƠN

8 tháng 5 2019

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

Ta có: \(2x+\frac{1}{x}\ge2\sqrt{2x+\frac{1}{x}}=2\sqrt{2}\)

\(\Rightarrow\left(2x+\frac{1}{x}\right)^2\ge8\)

\(\Rightarrow\left(2y+\frac{1}{y}\right)^2\ge8\)

Dấu \("="\) xảy ra \(\Leftrightarrow x=y=\pm\frac{1}{2}\)

Vậy \(P_{min}=16\Leftrightarrow x=y=\pm\frac{1}{2}\)

16 tháng 7 2015

 

A=x2+y2+2x-4y+5

 =x2+2x+1+y2-4y+4

=(x+1)2+(y-2)2

A=0

=>(x+1)2+(y-2)2=0

<=>x+1=0 và y-2=0

<=>x=-1 và y=2

26 tháng 7 2017

\(x^2-2y+2y^2-4x+7=\left(x^2-4x+4\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{5}{2}\)

\(=\left(x-2\right)^2+2\left(y^2-y+\frac{1}{4}\right)+\frac{5}{2}\)

\(=\left(x-2\right)^2+2\left(y^2-2.\frac{1}{2}.y+\frac{1}{4}\right)+\frac{5}{2}\)

\(=\left(x-2\right)^2+2\left(y-\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" xảy ra khi x=2 và y=1/2