K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) \(25x^2+\cdot\cdot\cdot+81\)

\(=\left(5x\right)^2+...+9^2\)

\(=\left(5x\right)^2+2.5x.9+9^2\)

\(=25x^2+90x+81\)

b) \(64x^2-\cdot\cdot\cdot+9\)

\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)

\(=\left(8x\right)^2-2.8x.3+3^2\)

\(=64x^2-48x+9\)

16 tháng 8 2017

ta có : \(A=x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)

ta có : \(\left(x-1\right)^2\ge0\) với mọi \(x\)\(\left(y-2\right)^2\ge0\) với mọi \(y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của \(A\) là 1 khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

vậy giá trị nhỏ nhất của \(A\) là 1 khi \(x=1;y=2\)

16 tháng 8 2017

A = \(x^2-2x+y^2-4y+6=x^2-2x+1+y^2-4y+4+1=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy GTNN của A là 1 khi x = 1 và y = 2

22 tháng 12 2017

Đặt \(A=\dfrac{x^2-10x+25}{x^2-5}\)

ĐK : \(x^2-5\ne0\\ \Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{5}\\x\ne-\sqrt{5}\end{matrix}\right.\)

\(A=0\\ \Leftrightarrow\dfrac{x^2-10x+25}{x^2-5}=0\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TM\right)\)

Vậy x =5 thì A =0

23 tháng 9 2017

\(Q=2x^2-6x\)

\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)

\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)

\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .

\(M=x^2+y^2-x+6y+10\)

\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)