Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) \(25x^2+\cdot\cdot\cdot+81\)
\(=\left(5x\right)^2+...+9^2\)
\(=\left(5x\right)^2+2.5x.9+9^2\)
\(=25x^2+90x+81\)
b) \(64x^2-\cdot\cdot\cdot+9\)
\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)
\(=\left(8x\right)^2-2.8x.3+3^2\)
\(=64x^2-48x+9\)
ta có : \(A=x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)
ta có : \(\left(x-1\right)^2\ge0\) với mọi \(x\) và \(\left(y-2\right)^2\ge0\) với mọi \(y\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) với mọi \(x;y\)
\(\Rightarrow\) GTNN của \(A\) là 1 khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
vậy giá trị nhỏ nhất của \(A\) là 1 khi \(x=1;y=2\)
A = \(x^2-2x+y^2-4y+6=x^2-2x+1+y^2-4y+4+1=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy GTNN của A là 1 khi x = 1 và y = 2
Đặt \(A=\dfrac{x^2-10x+25}{x^2-5}\)
ĐK : \(x^2-5\ne0\\ \Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{5}\\x\ne-\sqrt{5}\end{matrix}\right.\)
\(A=0\\ \Leftrightarrow\dfrac{x^2-10x+25}{x^2-5}=0\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TM\right)\)
Vậy x =5 thì A =0
\(Q=2x^2-6x\)
\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)
\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)
\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .
\(M=x^2+y^2-x+6y+10\)
\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)
A=x2+y2+2x-4y+5
=x2+2x+1+y2-4y+4
=(x+1)2+(y-2)2
A=0
=>(x+1)2+(y-2)2=0
<=>x+1=0 và y-2=0
<=>x=-1 và y=2