K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2021

Nếu \(m^2-4=0\\\leftrightarrow m=2\quad or\quad m=-2\)

\(\to\) BPT vô nghiệm

Nếu \(m^2-4>0\\\leftrightarrow m>2\quad or\quad m<-2\)

\(\to\) BPT có nghiệm \(x>\dfrac{3m}{m^4-4}\)

Nếu \(m^2-4<0\\\leftrightarrow m<2\quad or\quad m>-2\)

\(\to\) BPT có nghiệm \(x<\dfrac{3m}{m^2-4}\)

13 tháng 3 2021

\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)

TH1: \(m=2\)

Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m>2\)

\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)

\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán

TH3: \(m< 2\)

+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)

\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)

Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán

+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Vậy \(S=(-\infty;1]\)

Không biết đúng chưa, bài này phức tạp quá.

3 tháng 8 2016

f(x) = (m+1)x² - 2(m+1)x + 2m+3 

♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R 

♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2) 
ta biện luận theo dấu của delta': 
m│ -∞________ -2 _________ -1 ________ +∞ 
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈ 

* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm 

* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R 
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" ) 

* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm 

* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm

Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2 
~~~~~~~~~~ 
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm 
tức là f(x) < 0 với mọi x thuộc R 
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm 

* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi 
{ ∆' < 0 
{ m+1 < 0 
<=> { m < -2 hoăc m > -1 
----- { m < -1 
<=> m < -2 
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2 
 

NV
5 tháng 2 2021

- Với \(m=2\) BPT vô nghiệm

- Với \(m>2\) BPT có nghiệm \(m+1< x< 2m-1\)

- Với \(m< 2\) BPT có nghiệm \(2m-1< x< m+1\)

18 tháng 12 2017

\(m\left(mx-2\right)=x\left(3m+4\right)+2\)

\(m^2x-2m=3mx+4x+2\)

\(m^2x-2m-3mx-4x-2=0\)

\(m\left(mx-2-3x\right)-2\left(2x-1\right)=0\)

\(\orbr{\begin{cases}mx-2-3x=0\\2x-1=0\end{cases}}\)  

đến đây tự làm tiếp 

NV
30 tháng 3 2019

\(x\ge m\)

\(\sqrt{x-m+2\sqrt{m\left(x-m\right)}+m}+\sqrt{x-m-2\sqrt{m\left(x-m\right)}+m}\le2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-m}+\sqrt{m}\right)^2}+\sqrt{\left(\sqrt{x-m}-\sqrt{m}\right)^2}\le2\)

\(\Leftrightarrow\sqrt{x-m}+\sqrt{m}+\left|\sqrt{x-m}-\sqrt{m}\right|\le2\)

- Nếu \(\sqrt{x-m}\ge\sqrt{m}\Leftrightarrow x\ge2m\) BPT trở thành:

\(2\sqrt{x-m}\le2\Leftrightarrow x\le m+1\Rightarrow2m\le x\le m+1\)

\(\Rightarrow m+1\ge2m\Rightarrow m\le1\)

- Nếu \(\sqrt{x-m}< \sqrt{m}\Leftrightarrow m\le x< 2m\) BPT trở thành:

\(2\sqrt{m}\le2\Rightarrow m\le1\)

Vậy nếu \(0< m\le1\) thì BPT có nghiệm \(m\le x\le m+1\)

5 tháng 3 2021

Giup mik với 

4 tháng 3 2020

Violympic toán 8Chúc bạn học tốt!!!

4 tháng 3 2020

Cảm ơn bạn nhiều nha!!!haha

a: Thay m=2 vào pt, ta được:

\(x^2-2x+2=0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)

=>4m>12

hay m>3

17 tháng 1 2022

b, bạn làm bằng định lí Vi-ét đk ạ?