Bài 1 Tìm các số nguyên x và y sao cho ( x - 2). ( y + 1 ) = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 a x^2006=x
b 5^x+5^x+2=650
c Tìm các số nguyên x và y sao cho 2xy-x-y=2
giải chi tiết hộ với ạ
a: =>x^2006-x=0
=>x(x^2005-1)=0
=>x=0 hoặc x=1
b: =>5^x*26=650
=>5^x=25
=>x=2
c: =>x(2y-1)-y+1/2=5/2
=>(y-1/2)(2x-1)=5/2
=>(2y-1)(2x-1)=5
=>\(\left(2x-1;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(0;-2\right);\left(-2;0\right)\right\}\)
BÀI 1:
\(3x+23\)\(⋮\)\(x+4\)
\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)
Ta thấy \(3\left(x+4\right)\)\(⋮\)\(x+4\)
nên \(11\)\(⋮\)\(x+4\)
hay \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x+4\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-15\) \(-5\) \(-3\) \(7\)
Vậy \(x=\left\{-15;-5;-3;7\right\}\)
BÀI 2
\(\left(x+5\right)\left(y-3\right)=11\)
\(\Rightarrow\)\(x+5\) và \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau:
\(x+5\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-16\) \(-6\) \(-4\) \(6\)
\(y-3\) \(-1\) \(-11\) \(11\) \(1\)
\(y\) \(2\) \(-8\) \(14\) \(4\)
Vậy.....
bài 1:
3x + 23 chia hết cho x + 4
ta có: 3x + 23 chia hết cho x + 4
mà x + 4 chia hết cho x + 4
=> 3(x + 4) chia hết cho x + 4
=> (3x + 23) - 3(x + 4) chia hết cho x + 4
3x + 23 - 3x - 12 chia hết cho x + 4
=> 11 chia hết cho x + 4
=> x + 4 thuộc Ư(11)
mà Ư(11)= {-11;-1;1;11}
=> x + 4 thuộc {-11;-1;1;11}
=> x thuộc {-15;-5;-3;7}
Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4
bài 2:
(x + 5).(y-3) = 11
ta có bảng:
x + 5 -11 -1 1 11
y - 3 -1 -11 11 1
x -16 -6 -4 6
y 2 -8 14 4
vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11
Chúc bạn học giỏi ^^
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
\(a)\)
\(\left(x+3\right)\left(y+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)
Ta có bảng sau:
\(x+3\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(y+1\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) | \(0\) | \(-6\) |
\(y\) | \(2\) | \(-4\) | \(0\) | \(-2\) |
Vậy ...
\(b)\)
\(\left(x-1\right)\left(xy+1\right)=2=1.2=\left(-1\right).\left(-2\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(xy+1\) | \(2\) | \(-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
\(y\) | \(\frac{1}{2}\) | Loại | \(0\) | \(2\) |
Vậy ...
\(c)\)
\(xy-2=5\)
\(\Leftrightarrow x\left(y-2\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-2\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(y\) | \(7\) | \(-3\) | \(3\) | \(1\) |
Vậy ...
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
a) Ta có: (x-3)(y+2)=5
nên (x-3) và (y+2) là ước của 5
\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)
b) Ta có: (x-2)(y+1)=5
nên x-2 và y+1 là các ước của 5
\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)
ai bít thì giúp mk nha