x + 100 + 1 = 1 + 101 + 5
troll ae tí :)) ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Nhận thấy: \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\)
=> \(x-105=0\)
<=> \(x=105\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}-\frac{x-100}{5}-\frac{x-101}{4}-\frac{x-102}{3}=0\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)-\left(\frac{x-100}{5}-1\right)-\left(\frac{x-101}{4}-1\right)-\left(\frac{x-102}{3}-1\right)=0\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-105=0\left(Vì\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Leftrightarrow x=105\)
Với x > 0
ta có
x + 1/101 + x + 2/101 + ... + x + 100/ 101 = 101x
=> 100x + ( 1 + 2 + 3 + ... + 100)/101 = 101x
=> 5050/101 = 101 x - 100x
=> x = 50
x < 0 ta có :
-x - 1/101 - x - 2/101 - ... - x - 100/101 = 101x
=> - 100x - ( 1 + 2 + .. + 100)/101 = 101x
=> 5050/101 = -100x - 101x
=> 50 = -201x
=> x =
thang Tran trả lời sai, x chỉ có thể lớn hơn 0 thôi, ta có : VT= |x+1/101|+|x+2/101|+|x+3/101|+...+|x+100/101| >= 0
Mà VT=VP =)) VP= 101x >= (lớn hơn hoặc bằng) 0 mà 101 >= 0 =)) x >= 0
<sau đó mới làm giống TH x>0 của bn í>
SAi vậy mà bn vẫn ak???
- Với \(x=\left\{100;101\right\}\) là 2 nghiệm của pt
- Với \(x< 100\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|>0\\\left|x-101\right|=\left|101-x\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn
- Với \(x>101\Rightarrow\left\{{}\begin{matrix}\left|x-101\right|>0\\\left|x-100\right|>1\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn
- Với \(100< x< 101\Rightarrow\left\{{}\begin{matrix}0< x-100< 1\\0< 101-x< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|^{100}< x-100\\\left|x-101\right|^{101}=\left|101-x\right|^{101}< 101-x\end{matrix}\right.\)
\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}< x-100+101-x=1\) ptvn
Vậy pt có đúng 2 nghiệm \(x=\left\{100;101\right\}\)
a: S=1(1+1)+2(1+2)+...+100(1+100)
=1+2+...+100+1^2+2^2+...+100^2
\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)
\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)
=343450
b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)
=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)
=>4*A=100*101*102*103
=>A=25*101*102*103
x +100 +1=107
x +100=107-1
x +100=106
x=106-100
x=6
k nhé
x + 100 + 1 = 1 + 101 + 5
x + 101 = 107
x = 107 - 101
x = 6
ai tk mk mk tk lại