Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x2 - 1 )( x - 101 ) + 101x( x + 1 ) = 101
<=> x3 - 101x2 - x + 101 + 101x2 + 101x - 101 = 0
<=> x3 + 100x = 0
<=> x( x2 + 100 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2+100=0\end{cases}}\Leftrightarrow x=0\)( vì x2 + 100 ≥ 100 > 0 ∀ x )
b) x4 - 3x2( 2x - 3 ) = 0
<=> x4 - 6x3 + 9x2 = 0
<=> x2( x2 - 6x + 9 ) = 0
<=> x2( x - 3 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
a,\(\left(x^2-1\right)\left(x-101\right)+101x\left(x+1\right)=101\)
\(\Leftrightarrow x^3-101x^2-x+101+101x^2+101x=101\)
\(\Leftrightarrow x^3+100x=101-101\)
\(\Leftrightarrow x^3+101x=0\)
\(\Leftrightarrow x\left(x^2+101\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+101\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-101\end{cases}\Rightarrow}x=0}\)
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|>0\forall x\)
mà \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
nên x>0
Với x>0, ta được:
\(x+\frac{1}{101}+x+\frac{2}{101}+x+\frac{3}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x-101x+\frac{5050}{101}=0\)
\(\Leftrightarrow-x+50=0\)
hay x=50
Vậy: S={50}
Nhận xét :
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
b)
Tương tự câu a) , phương trình tương đương với :
\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)
\(\Rightarrow x=\frac{97}{195}\)
Ta có :\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\right)=\left(x-105\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
<=> x - 105 = 0 (Vì \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\))
<=> x = 105
Vậy nghiệm phương trình là x = 105
\(< =>\left(\dfrac{x-5}{100}-1\right)+\left(\dfrac{x-4}{101}-1\right)+\left(\dfrac{x-3}{102}-1\right)+3=\left(\dfrac{x-100}{5}-1\right)+\left(\dfrac{x-101}{4}-1\right)+\left(\dfrac{x-102}{3}-1\right)+3\)\(< =>\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}\)
\(< =>\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\) = 0
<=> x - 105 = 0
<=> x = 105
Vậy tập nghiệm của phương trình là S = \(\left\{105\right\}\)
Bạn tham khảo tại link : https://olm.vn/hoi-dap/detail/205275532692.html
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)