K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)

\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)

\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)

Áp dụng BĐT Cosi ta có:

\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)

\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)

15 tháng 10 2020

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

15 tháng 10 2020

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

1 tháng 3 2016

de thế mà ko biết lam

21 tháng 3 2016

ai biết giải hộ. xin chỉ giáo

28 tháng 5 2020

Xét \(VT=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\)

\(=\frac{\frac{x}{y}}{\frac{y}{z}+1}+\frac{\frac{y}{z}}{\frac{x}{y}+1}+1+\frac{1}{\frac{x}{z}+1}\)

Đặt \(\frac{x}{y}=u,\frac{y}{z}=v\left(u,v>0\right)\Rightarrow\frac{x}{z}=uv\ge1\)(Do \(x\ge z\))

Khi đó vế trái được viết lại thành: \(\frac{u}{v+1}+\frac{v}{u+1}+1+\frac{1}{uv+1}\ge\frac{5}{2}\)

\(\Leftrightarrow\frac{u}{v+1}+\frac{v}{u+1}+\frac{1}{uv+1}\ge\frac{3}{2}\)với \(uv\ge1\)

Theo BĐT Bunhiacopxki dạng phân thức, ta có: \(\frac{u}{v+1}+\frac{v}{u+1}=\frac{u^2}{uv+u}+\frac{v^2}{uv+v}\ge\frac{\left(u+v\right)^2}{2uv+u+v}\)

\(\ge\frac{\left(u+v\right)^2}{\left(u+v\right)+\frac{\left(u+v\right)^2}{2}}=\frac{2\left(u+v\right)}{u+v+2}\)

Mặt khác: \(\frac{1}{uv+1}\ge\frac{1}{\frac{\left(u+v\right)^2}{4}+1}=\frac{4}{\left(u+v\right)^2+4}\)

Khi đó ta quy BĐT cần chứng minh về: \(\frac{2\left(u+v\right)}{u+v+2}+\frac{4}{\left(u+v\right)^2+4}\ge\frac{3}{2}\)(*)

Đặt \(w=u+v\ge2\sqrt{uv}\ge2\). Khi đó (*) trở thành \(\frac{2w}{w+2}+\frac{4}{w^2+4}\ge\frac{3}{2}\)với \(w\ge2\)

\(\Leftrightarrow\frac{\left(w-2\right)^2}{2\left(w+2\right)\left(w^2+4\right)}\ge0\)(đúng với mọi \(w\ge2\))

Đẳng thức xảy ra khi \(\hept{\begin{cases}u+v=2\\uv=1\\u=v\end{cases}}\Leftrightarrow u=v=1\)hay x = y = z

28 tháng 5 2020

Bạn tham khảo câu trả lời của mình và các bạn tại đây:

Câu hỏi của Lê Thành An - Toán lớp 9 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/253622963565.html ( link nếu bạn ngại vào TKHĐ )

3 tháng 2 2018

Đặt biểu thức trên là A, thay xyz = 2018, ta dược :

\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)

\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)

\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)

⇒ĐPCM

3 tháng 2 2018

Please help me!!!!!!!!!!!khocroikhocroikhocroi

I feel this exercise is difficult!!!!!!bucminh