A=3+3^3+3^5+.....+3^91
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{7}+\frac{2}{91}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{91}}.\)
\(A=\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{7}+\frac{2}{91}}{2.\left(\frac{2}{3}+\frac{2}{5}-\frac{2}{7}+\frac{2}{91}\right)}\)
\(A=\frac{1}{2}\)
\(A=\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{7}+\frac{2}{91}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{91}}=\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{7}+\frac{2}{91}}{2.\left(\frac{2}{3}+\frac{2}{5}-\frac{2}{7}+\frac{2}{91}\right)}=\frac{1}{2}\)
Cách này là nhanh nhất rùi
Ủng hộ mk nha ^_-
A = 1 + 33 + 34 + 35 +......+ 3100
A\(\times\) 3 = 3 + 34 + 35 +.......+ 3100 + 3101
3A - A = 3 + 3101 - 1 - 33
2A = 3101 - 25
Giả sử A ⋮ 91 ⇒ A ⋮ 7; 13
Vì 2 không chia hết cho 7; 13 ⇒ 3101 - 25 ⋮ 7
Đặt B = 3101 - 25 = (33)33.32 - 25 = 2733.9 - 25
27 \(\equiv\) - 1 (mod 7) ⇒ (27)33 \(\equiv\) (-1)33(mod 7)
⇒ 2733 \(\equiv\) -1 (mod 7)
9 \(\equiv\) 2 (mod 7)
⇒ 2733.9 \(\equiv\) -1.2 (mod 7)
⇒ 2733.9 \(\equiv\) -2 (mod 7)
25 \(\equiv\) 4 (mod 7)
⇒ 2733.9 - 25 \(\equiv\) -2 - 4 (mod 7)
⇒ B \(\equiv\) - 6 (mod 7) ⇒ B không chia hết cho 7 trái với giả thiết vậy điều giả sử là sai
A không thể chia hết cho 91 xem lại đề nhé em
Bài 1:
a) \(\dfrac{65}{91}+\dfrac{-33}{55}=\dfrac{5}{7}+\dfrac{-3}{5}=\dfrac{25}{35}+\dfrac{-21}{35}=\dfrac{4}{35}\)
b) \(\dfrac{36}{-84}+\dfrac{100}{450}=\dfrac{-3}{7}+\dfrac{2}{9}=\dfrac{-27}{63}+\dfrac{14}{63}=\dfrac{-13}{63}\)
A = (3^5.1 + 3^5.3) + (3^7.1 + 3^7.3) + (3^9.1 + 3^9.3)
= 3^5.(1+3) + 3^7.(1+3) + 3^9.(1+3)
= 3^5.4 + 3^7.4 + 3^9.4
=4.(3^5 +3^7 +3^9)
=4.(3^5.1 +3^5.3^2 + 3^5.3^4)
=4.3^5.(1+3^2+3^4)
=4.243.(1+9+81)
=972.91 chia hết cho 91
Vậy A chia hết cho 91