tìm x biết
(x-2)(2x+4)-2x(x+1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Áp dụng phương pháp hệ số bất định để phân tích \(x^4-2x^3-x^2-2x+1\)thành nhân tử.
Phân tích được là: \(\left(x^2-3x+1\right)\left(x^2+x+1\right)\)
=> \(\left(x^2-3x+1\right)\left(x^2+x+1\right)=0\)
Vì \(\left(x^2+x+1\right)>0\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}=\frac{5}{4}\Rightarrow\left(x-\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}}{2}+\frac{3}{2}\\x=\frac{-\sqrt{5}}{2}+\frac{3}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+3}{2}\\x=\frac{-\sqrt{5}+3}{2}\end{cases}}}\)
(x-2)(2x +4) - 2x(x+1) =0
2x2 + 4x - 4x - 8 - 2x2 - 2x = 0
-8 - 2x = 0
2x = -8
x = -4
x=1