Cho tam giác ABC vuông ở A có AB> AC. Đường trung trực của cạnh huyền BC cắt AB tại điểm D. M là một điểm tùy ý trên đoạn BD.
a, Chứng minh rằng D nằm giữa A và B
b, Chứng minh rằng: BD<CM
Làm nhanh hộ mình, mình tick cho. Trưa nay mình cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ôi dào , bài nhu thế này ta ko bt làm , phải làm sao đây ....?
a: Xét ΔCBD có
CA vừa là đường cao, vừa là đường trung tuyến
nên ΔCBD cân tại C
c: Gọi N là trung điểm của AC
=>QN là đường trung trực của AC
=>QN//AD
Xét ΔCAD có
N là trung điểm của AC
NQ//AD
=>Q là trung điểm của CD
Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
mà BQ là trung tuyến
nên B,M,Q thẳng hàng
a: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
b: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>AM=1/2MC
c: Gọi giao của d với AC là E
d là trung trực của AE
=>QE vuông góc AC tại E và E là trung điểm của AC
Xét ΔCAD có
E là trung điểm của CA
EQ//DA
=>Q là trung điểm của CD
Xét ΔCBD có
M là trọng tâm
BQ là đường trung tuyến
Do đó; B,Q,M thẳng hàng
a, Xét ▲ABC và ▲MDC có:
∠CAB=∠DMC (=90o)
∠DCB chung
=> ▲ABC∼▲MDC (g.g)
b, Xét ▲MBI và ▲ABC có:
∠CAB=∠IMB (=90o)
∠ABC chung
=> ▲MBI∼▲ABC (g.g)
=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC
c, Xét ▲ADB và ▲KIB có:
∠DAB=∠CKB (=90o)
∠DBA chung
=> ▲ADB∼▲KIB (g.g)
=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB
Xét ▲DKC và ▲IAC có:
∠DKC=∠IAC (=90o)
∠DCK chung
=> ▲DKC∼▲IAC (g.g)
=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC
Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi
CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi
nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M
d, Xét ▲BMA và ▲BIC có:
\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)
∠ACB chung
=> ▲BMA ∼▲BIC (c.g.c)
=> ∠BAM=∠BCI
Xét ▲CAI và ▲BKI có:
∠CAI=∠BKI (=90o)
∠AIC=∠KIB (đ.đ)
=> ▲CAI ∼▲BKI (g.g)
=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)
Xét ▲IAK và ▲ICB có:
\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)
∠AIK=∠CIB (đ.đ)
=> ▲IAK ∼▲ICB (g.g)
=> ∠KAB=∠BCI
mà ∠BAM=∠BCI
nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)
a)Vì tg ABC có AB > AC
nên A nằm lệch về 1 phía so với đường trung trực của BC
-> D nằm giữa A và B
b)
Vì D nằm trên đường trung trực của BC nên BD=DC
Mặt khác CD, CM đều là đường xiên, AM > AD
-> CM > CD
-> CM > BD (đpcm)