Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ôi dào , bài nhu thế này ta ko bt làm , phải làm sao đây ....?
a)Vì tg ABC có AB > AC
nên A nằm lệch về 1 phía so với đường trung trực của BC
-> D nằm giữa A và B
b)
Vì D nằm trên đường trung trực của BC nên BD=DC
Mặt khác CD, CM đều là đường xiên, AM > AD
-> CM > CD
-> CM > BD (đpcm)
Xét ΔABC vuông cân tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=MB
Xét ΔABC vuông cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao, đường phân giác ứng với cạnh BC(Định lí tam giác cân)
⇒AM⊥BC
Ta có: \(\widehat{EMA}+\widehat{AMD}=\widehat{EMD}\)(tia MA nằm giữa hai tia ME,MD)
hay \(\widehat{EMA}+\widehat{AMD}=90^0\)(1)
Ta có: \(\widehat{AMD}+\widehat{BMD}=\widehat{AMB}\)(tia MD nằm giữa hai tia MA,MB)
hay \(\widehat{AMD}+\widehat{BMD}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{EMA}=\widehat{DMB}\)
Ta có: AM là tia phân giác của \(\widehat{BAC}\)(cmt)
nên \(\widehat{MAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{90^0}{2}=45^0\)
hay \(\widehat{EAM}=45^0\)
mà \(\widehat{B}=45^0\)(Số đo của một góc ở đáy trong ΔABC vuông cân tại A)
nên \(\widehat{EAM}=\widehat{B}\)
Xét ΔEAM và ΔDBM có
\(\widehat{EMA}=\widehat{DMB}\)(cmt)
AM=MB(cmt)
\(\widehat{EAM}=\widehat{B}\)(cmt)
Do đó: ΔEAM=ΔDBM(g-c-g)
⇒ME=MD(hai cạnh tương ứng)(đpcm)
ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017
a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:
AH là cạnh chung
AB = AC ( \(\Delta ABC\)cân tại A)
BH = CH ( H là trung điểm của BC)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)
Xét \(\Delta ABC\)cân tại A ta có:
AH là đường trung tuyến ( H là trung điểm của BC)
\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)
\(\Rightarrow AH⊥BC\)tại H.
b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:
BH = CH ( H là trung điểm của BC)
\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)
\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)
c) Ta có:
AB = AC (\(\Delta ABC\)cân tại A)
BD = CE ( cmt)
\(\Rightarrow AB-BD=AC-CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)
Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Nên \(\widehat{ADE}=\widehat{ABC}\)
Mặt khác 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)DE // BC.
d) Nối A với I.
Ta có:
\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)
\(\Rightarrow HE=EN+ME\)
\(\Rightarrow HE=MN\)
Xét \(\Delta AEN\)vuông tại E ta có:
\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)
\(\Rightarrow AN^2=AD^2+HM^2\)
\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)
\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)
\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)
\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AI^2-NI^2\)
\(\Rightarrow AI^2=AN^2+NI^2\)
\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)
\(\Rightarrow IN⊥AN\)tại N.
-Đề sai.
sửa hộ cái coi nào