K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

a) Vì tam giác ABC cân tại A (đề)

=> AB = AC

Mà AB = AE (gt)

=> AE = AC

Xét tam giác ACE có AE = AC (cmt) 

=> tam giác ACE cân tại A

b) Ta có: AB = AE (gt)

=> A là trung điểm BE

=> CA là đường trung tuyến

Mà: CA = BA = EA = 1/2 BE

Vậy có nghĩa trong tam giác này xuất hiện đường trung tuyến ứng với cạnh huyền

Mà cái này chỉ có trong tam giác vuông

=> Tam giác BCE vuông tại C

p/s: Bạn tự vẽ hình nhé vì hình cũng dễ :)

Cam on ban Mai nhe >-<

4 tháng 1 2017

thiếu đề rồi :(

a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-80^0}{2}=50^0\)

b:\(\widehat{ABD}+\widehat{ABC}=180^0\)

\(\widehat{ACE}+\widehat{ACB}=180^0\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

c: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

8 tháng 1 2022

cảm ơn bn ;-;

 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
26 tháng 12 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

b: Ta có: AB//CE

AB\(\perp\)AC

Do đó: CE\(\perp\)CA

=>ΔCAE vuông tại C

c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có

CA chung

AB=CE

Do đó: ΔABC=ΔCEA

d: ta có: ΔABC=ΔCEA

=>BC=EA

mà \(AM=\dfrac{1}{2}EA\)

nên \(AM=\dfrac{1}{2}BC\)

e: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

f: Xét ΔMHC và ΔMKB có

MB=MC

\(\widehat{MBK}=\widehat{MCH}\)

BK=CH

Do đó: ΔMHC=ΔMKB

=>\(\widehat{HMC}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)

nên \(\widehat{HMC}+\widehat{KMC}=180^0\)

=>K,M,H thẳng hàng

25 tháng 12 2023

a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều. 

Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.

 

b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ. 

Vì AB // EC, nên góc BAC = góc ECA. 

Vậy tam giác ACE cũng là tam giác vuông tại C.

 

c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A). 

Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.

 

d) Ta đã biết M là trung điểm của BC, vậy BM = MC. 

Vì MA = ME, nên MA = MC/2. 

Do đó, AM = 1/2 BC.

 

e) Ta đã biết AB = EC và AB // EC. 

Vì MA = ME, nên MA = MC. 

Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng. 

Vậy AC = BE và AC // BC.

 

f) Trên BE lấy K, trên AC lấy H sao cho BK = CH. 

Vì M là trung điểm của BC, nên MK = MC/2. 

Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ. 

Vậy góc MCK = 60 độ. 

Vì BK = CH, nên góc BKC = góc CHB. 

Vậy góc BKC = góc CHB = 60 độ. 

Vậy tam giác BKC và tam giác CHB là hai tam giác đều. 

Vậy 3 điểm K, M, H thẳng hàng.

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC