12x+7x=437
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)
\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)=\left(x-2\right)\left(6x-7\right)\)
Lời giải:
\(P(x)=A(x)-12x^4+7x^3=12x^4-7x^3+5x-15-12x^4+7x^3\)
\(=5x-15\)
$P(x)=0\Leftrightarrow 5x-15=0$
$\Leftrightarrow x=3$
Vậy đa thức $P(x)$ có nghiệm $x=3$
\(\Leftrightarrow21x-7x^2-12x^2+60x=0\Leftrightarrow-19x^2+81x=0\)
\(\Leftrightarrow x\left(-19x+81\right)=0\Leftrightarrow x=0;x=\dfrac{81}{19}\)
-12x(x - 5) + 7x(3 - x) = 5
-12x2 + 60 + 21x - 7x2 = 5
-19x2 + 21x + 60 - 5 = 0
-19x2 + 21x + 55 = 0
\(\Delta=b^2-4ac=21^2-4.55.\left(-19\right)=441+4180=4621>0\)
vậy phtrinh có hai nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-21+\sqrt{4621}}{2.\left(-19\right)}=\frac{-21+\sqrt{4621}}{-38}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-21-\sqrt{4621}}{2.\left(-19\right)}=\frac{-21-\sqrt{4621}}{-38}\)
\(-12x\left(x-5\right)+7x\left(3-x\right)=5\)
\(-12x^2+60+21x-7x^2=5\)
\(-19x^2+60+21x=5\)
\(-19x^2+21x=5-60=-55\)
\(-19x^2+21x+55=0\)
\(a=-19;b=-21;c=55\)
\(=B^2-4ac\)
\(=21^2-4\left(-19\right).55\)
\(\Delta=4621\)
Giá trị delta cao hơn 0, vì vậy pt có hai nghiệm
\(x_1=\frac{-b-\sqrt{\Delta}}{2a};x_2=\frac{-b+\sqrt{\Delta}}{2a}\)
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{\left(-21\right)-\sqrt{4621}}{2.\left(-19\right)}=\frac{-21-\sqrt{4621}}{-38}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-21+\sqrt{4621}}{2.\left(-19\right)}=\frac{-21+\sqrt{4621}}{-38}\)
\(x^3-7x^2=3x^2-12x\)
\(\Leftrightarrow x^3-10x^2+12x=0\Leftrightarrow x\left(x^2-10x+12\right)=0\)
\(\Leftrightarrow x\left(x-5-\sqrt{13}\right)\left(x-5+\sqrt{13}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5+\sqrt{13}\\x=5-\sqrt{13}\end{matrix}\right.\)
<=>\(x^3-10x^2+12x=0\)
<=>\(x\left(x^2-10x+12\right)=0\)
<=>\(x\left(x-5-\sqrt{13}\right)\left(x-5+\sqrt{13}\right)=0\)
<=>\(\left[{}\begin{matrix}x=0\\x-5-\sqrt{13}=0\\x-5+\sqrt{13}=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=5+\sqrt{13}\\x=5-\sqrt{13}\end{matrix}\right.\)
\(-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(\Rightarrow-12x+60+21-7x=5\)
\(\Rightarrow-12x-7x=5-60-21\)
\(\Rightarrow-19x=-76\)
\(\Rightarrow x=4\)
Vậy x = 4
-12x(X-5)+7x(3-X)=5-12x(X-5)+7x(3-X)=5-12x(X-5)+7x(3-X)=5
\(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(6x-7\right)\)
a) \(=7x^2+49x+x+7=7x\left(x+7\right)+\left(x+7\right)=\left(x+7\right)\left(7x+1\right)\)
c) \(=15x^2+10x-3x-2=5x\left(3x+2\right)-\left(3x+2\right)=\left(3x+2\right)\left(5x-1\right)\)
ta có : 7x2 + 49x + x + 7
= 7x(x + 7) + (x + 7)
= (x + 7) (7x + 1)
k mk mk k lại
Dùng lược đồ hooc-nơ em nhé. Em có thể lên google để tìm hiểu về nó.
12 . x + 7 . x = 437
( 12 + 7 ) . x = 437
19 . x = 437
x = 437 : 19
x = 23 :3
12x+7x=437
x ( 12 + 7 ) = 437
x . 19 = 437
x = 23