K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

\(10-\left(y-2x\right)^2-4x^2\le10\)đẳng thức khi \(\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

17 tháng 11 2016

-8x2+4xy-y2+10=10-(4x2-4xy+y2)-4x2=10-(2x-y)2-(2x)2

vi-(2x-y)2-(2x)2 ≤0

=>10-(2x-y)2-(2x)2≤10

dau bang say ra khi (2x-y)2-(2x)2=0 

vậy gái trị nhỏ nhất là:10

20 tháng 11 2016

\(Q=-8x^2+4xy-y^2+10\)<=>\(Q=10-4x^2+4xy-y^2-4x^2\)

<=>\(Q=10-\left[\left(2x^2\right)-4xy+y^2\right]-\left(2x\right)^2\)<=>\(Q=10-\left(2x-y\right)^2-\left(2x\right)^2\)

<=>\(Q=10-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\\left(2x\right)^2\ge0\end{cases}\Leftrightarrow\left(2x-y\right)^2+\left(2x\right)^2\ge0}\)\(\Leftrightarrow-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\le0\)

\(\Leftrightarrow Q=10-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\le10\)

=>Qmax=10 <=> \(\left(2x-y\right)^2=\left(2x\right)^2=0\)<=>\(2x-y=2x=0\) <=>\(x=y=0\)

Vậy Qmax=10 tại x=y=0

AH
Akai Haruma
Giáo viên
5 tháng 1 2023

Lời giải:

ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$

$\Leftrightarrow (x-2y)^2+8x=5$.

Đặt $x-2y=a; x=b$ thì bài toán trở thành:

Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$

Áp dụng BĐT AM-GM:

$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$

$\Rightarrow a^2+1\geq -2a$

$\Rightarrow a^2+8b+1\geq -2a+8b$

$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$

17 tháng 11 2016

q=-(4x^2-4xy+y^2)-4x^2+10

vậy giá trị lớn nhất bằng 10

 

13 tháng 12 2023

a: \(A=-x^2-4x-2\)

\(=-x^2-4x-4+2\)

\(=-\left(x^2+4x+4\right)+2\)

\(=-\left(x+2\right)^2+2< =2\forall x\)

Dấu '=' xảy ra khi x+2=0

=>x=-2

b: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}< =\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)

=>\(x=-\dfrac{3}{4}\)

c: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-x^2-2x-1+9\)

\(=-\left(x^2+2x+1\right)+9\)

\(=-\left(x+1\right)^2+9< =9\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

d: \(D=-8x^2+4xy-y^2+3\)

\(=-8\left(x^2-\dfrac{1}{2}xy\right)-y^2+3\)

\(=-8\left(x^2-2\cdot x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2\right)+\dfrac{1}{2}y^2-y^2+3\)

\(=-8\left(x-\dfrac{1}{4}y\right)^2-y^2+3< =3\forall x,y\)

Dấu '=' xảy ra khi y=0 và x-1/4y=0

=>y=0 và x=0

13 tháng 12 2023

TY

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

24 tháng 11 2017

Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2