K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

ta thấy \(\left|2x-8\right|\ge0\forall x\)

\(\left|32-8x\right|\ge0\forall x\)

\(\Rightarrow\left|2x-8\right|+\left|32-8x\right|\ge0\forall x\)(1)

Để \(\left|2x-8\right|+\left|32-8x\right|=0\)(2)

Từ (1)và (2)

\(\Rightarrow\orbr{\begin{cases}\left|2x-8\right|=0\\\left|32-8x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-8=0\\32-8x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=4\end{cases}}}\)

KL x=4

a. \(8x\left(x-2007\right)-2x+4034=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy x=2017 hoặc x=1/4

b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)

\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy x=0 hoặc x=-4

c.\(4-x=2\left(x-4\right)^2\)

\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)

\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x=4 hoặc x=7/2

d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)

Nxet: (x2+3)>0 với mọi x

=> x-2=0 <=>x=2

Vậy x=2

 

18 tháng 7 2023

a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0

     4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0

     4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0

     4\(x^2\) - 8029\(x\) + 2017 = 0

     4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2  + 2017 = 0

    4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017

       \(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\) 

 

 

26 tháng 7 2021

Trả lời:

Bài 2: 

a, \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

Vậy ...

b, \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2000=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2000\end{cases}}\)

Vậy ...

c, \(2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)

Vậy ...

d, \(\left(x+1\right)=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

Vậy ...

26 tháng 7 2021

Trả lời:

Bài 1: 

\(C=x-x^2=-\left(x^2-x\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTLN của C = 1/4 khi x = 1/2

\(E=4x^2+8x+y^2-4y+32=\left(2x\right)^2+8x+y^2-4y+4+4+24\)

\(=\left[\left(2x\right)^2+8x+4\right]+\left(y^2-4y+4\right)+24=\left(2x+2\right)^2+\left(y-2\right)^2+24\ge24\forall x\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Vậy GTNN của E = 24 khi x = - 1; y = 2

18 tháng 5 2021

`2)x^4+2x^3-x^2-2x+1=0`

`<=>x^4+2x^3+x^2-2x^2-2x+1=0`

`<=>(x^2+x)^2-2(x^2+x)+1=0`

`<=>(x^2+x-1)^2=0`

`<=>x^2+x-1=0`

`\Delta=1+4=5`

`=>x_{1,2}=(-1+-sqrt5)/2`

Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`

18 tháng 5 2021

`3)x^4-4x^3-9x^2+8x+4=0`

`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`

`<=>(x-1)(x^3-3x^2-12x-4)=0`

`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`

`<=>(x-1)(x+2)(x^2-5x-10)=0`

`+)x=1`

`+)x=-2`

`+)x^2-5x-10=0`

`Delta=25+40=65`

`=>x_{12}=(5+sqrt{65})/2`

24 tháng 6 2021

`đk:x ne 0,-2`

`a)D=(x/(x+2)+(8x+8)/(x^2+2x)-(x+2)/x):((x^2-x-3)/(x^2+2x)+1/x)`

`=((x^2+8x+8-x^2-4x-4)/(x(x+2))):((x^2-x-3+x+2)/(x(x+2)))`

`=(4x+4)/(x(x+2)):(x^2-1)/(x(x+2))`

`=(4x+4)/(x^2-1)(x ne +-1)`

`=4/(x-1)`

`b)x(x-2)-(x-2)=0`

`<=>(x-2)(x-1)=0`

Vì `x ne 1=>x-1 ne 0`

`=>x-2=0<=>x=2`

`=>D=4/(2-1)=4`

`c)D<0`

Mà `4>0`

`=>x-1<0`

`=>x<1`

Kết hợp đkxđ:

`=>x<1,x ne 0,x ne -2`

`d)D=2`

`<=>4/(x-1)=2`

`<=>2/(x-1)=1`

`<=>x-1=2`

`<=>x=3(tm)`

 

2 tháng 8 2018

\(a,3x\left(x-4\right)-2x+8=0\)

\(\Rightarrow3x\left(x-4\right)-2\left(x-4\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\4\end{cases}}}\)

Vậy \(x=\frac{2}{3}\)hoặc \(x=4\)

\(b,\left(3x-1\right)^2-\left(3x+2\right)\left(3x+1\right)=2\)

\(\Rightarrow9x^2-6x+1-\left(9x^2+3x+6x+1\right)-2=0\)

\(\Rightarrow9x^2-6x+1-9x^2-3x-6x-1-2=0\)

\(\Rightarrow-15x-2=0\)

\(\Rightarrow-15x=2\)

\(\Rightarrow x=\frac{-2}{15}\)

27 tháng 2 2020

Bài 1 Tìm x biết:

a)65-(29-x)=32

65 -29+x=31

x=31-65+29

x=-5

b)(x+5)-(x+23)=x-34

x+5 -x +23 = x-34

(x-x)+ (23+5)=x-34

0+28=x-34

28=x-34

28+34=x

62=x

=>x=62

c)(16-x)+(x-38)=x+44

16-x+x-38=x+44

-x+x-x=44-16+38

-x=36

=>x=-36

d)-12+3(-x+7)=-18

3(-x+7)=-18+12

3(-x+7)=-6

-x+7=-6:3

-x+7=-2

-x=-2-7

-x=-9

=>x=9

27 tháng 2 2020

Baif 2

d)|7-x|=10

=> \(\left[{}\begin{matrix}7-x=10\\7-x=-10\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=7-10\\x=-10-7\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=-3\\x=-17\end{matrix}\right.\)

e)(x-6).(7-2x)=0

\(\Rightarrow\)\(\left[{}\begin{matrix}x-6=0\\7-2x=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=0+6\\2x=7\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=6\\x=7:2\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=6\\x=3,5\end{matrix}\right.\)

f)(9-x).(2x+8)=0

\(\Rightarrow\)\(\left[{}\begin{matrix}9-x=0\\2x+8=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=0+9\\2x=-8\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)

g)x(-x+8).(-3x-18)=0

\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\-x+8=0\\-3x-18=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\-x=0+8\\-3x=0+18\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\-x=8\\-3x=18\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=-8\\x=18:\left(-3\right)\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=-8\\x=-6\end{matrix}\right.\)

h)(-x+8).(x-54).(-24-x)=0

\(\Rightarrow\)\(\left[{}\begin{matrix}-x+8=0\\x-54=0\\-24-x=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}-x=8\\x=0+54\\-x=0+24\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=8\\x=54\\-x=24\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}x=8\\x=54\\x=-24\end{matrix}\right.\)

a: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)