|2x-8|+|32-8x|=0 (tìm x nha) mình k đó ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
Trả lời:
Bài 2:
a, \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
Vậy ...
b, \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2000=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2000\end{cases}}\)
Vậy ...
c, \(2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)
Vậy ...
d, \(\left(x+1\right)=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Vậy ...
Trả lời:
Bài 1:
\(C=x-x^2=-\left(x^2-x\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTLN của C = 1/4 khi x = 1/2
\(E=4x^2+8x+y^2-4y+32=\left(2x\right)^2+8x+y^2-4y+4+4+24\)
\(=\left[\left(2x\right)^2+8x+4\right]+\left(y^2-4y+4\right)+24=\left(2x+2\right)^2+\left(y-2\right)^2+24\ge24\forall x\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy GTNN của E = 24 khi x = - 1; y = 2
`2)x^4+2x^3-x^2-2x+1=0`
`<=>x^4+2x^3+x^2-2x^2-2x+1=0`
`<=>(x^2+x)^2-2(x^2+x)+1=0`
`<=>(x^2+x-1)^2=0`
`<=>x^2+x-1=0`
`\Delta=1+4=5`
`=>x_{1,2}=(-1+-sqrt5)/2`
Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`
`3)x^4-4x^3-9x^2+8x+4=0`
`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`
`<=>(x-1)(x^3-3x^2-12x-4)=0`
`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`
`<=>(x-1)(x+2)(x^2-5x-10)=0`
`+)x=1`
`+)x=-2`
`+)x^2-5x-10=0`
`Delta=25+40=65`
`=>x_{12}=(5+sqrt{65})/2`
`đk:x ne 0,-2`
`a)D=(x/(x+2)+(8x+8)/(x^2+2x)-(x+2)/x):((x^2-x-3)/(x^2+2x)+1/x)`
`=((x^2+8x+8-x^2-4x-4)/(x(x+2))):((x^2-x-3+x+2)/(x(x+2)))`
`=(4x+4)/(x(x+2)):(x^2-1)/(x(x+2))`
`=(4x+4)/(x^2-1)(x ne +-1)`
`=4/(x-1)`
`b)x(x-2)-(x-2)=0`
`<=>(x-2)(x-1)=0`
Vì `x ne 1=>x-1 ne 0`
`=>x-2=0<=>x=2`
`=>D=4/(2-1)=4`
`c)D<0`
Mà `4>0`
`=>x-1<0`
`=>x<1`
Kết hợp đkxđ:
`=>x<1,x ne 0,x ne -2`
`d)D=2`
`<=>4/(x-1)=2`
`<=>2/(x-1)=1`
`<=>x-1=2`
`<=>x=3(tm)`
\(a,3x\left(x-4\right)-2x+8=0\)
\(\Rightarrow3x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\4\end{cases}}}\)
Vậy \(x=\frac{2}{3}\)hoặc \(x=4\)
\(b,\left(3x-1\right)^2-\left(3x+2\right)\left(3x+1\right)=2\)
\(\Rightarrow9x^2-6x+1-\left(9x^2+3x+6x+1\right)-2=0\)
\(\Rightarrow9x^2-6x+1-9x^2-3x-6x-1-2=0\)
\(\Rightarrow-15x-2=0\)
\(\Rightarrow-15x=2\)
\(\Rightarrow x=\frac{-2}{15}\)
Bài 1 Tìm x biết:
a)65-(29-x)=32
65 -29+x=31
x=31-65+29
x=-5
b)(x+5)-(x+23)=x-34
x+5 -x +23 = x-34
(x-x)+ (23+5)=x-34
0+28=x-34
28=x-34
28+34=x
62=x
=>x=62
c)(16-x)+(x-38)=x+44
16-x+x-38=x+44
-x+x-x=44-16+38
-x=36
=>x=-36
d)-12+3(-x+7)=-18
3(-x+7)=-18+12
3(-x+7)=-6
-x+7=-6:3
-x+7=-2
-x=-2-7
-x=-9
=>x=9
Baif 2
d)|7-x|=10
=> \(\left[{}\begin{matrix}7-x=10\\7-x=-10\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=7-10\\x=-10-7\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=-3\\x=-17\end{matrix}\right.\)
e)(x-6).(7-2x)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}x-6=0\\7-2x=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0+6\\2x=7\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=6\\x=7:2\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=6\\x=3,5\end{matrix}\right.\)
f)(9-x).(2x+8)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}9-x=0\\2x+8=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0+9\\2x=-8\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
g)x(-x+8).(-3x-18)=0
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\-x+8=0\\-3x-18=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\-x=0+8\\-3x=0+18\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\-x=8\\-3x=18\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=-8\\x=18:\left(-3\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=-8\\x=-6\end{matrix}\right.\)
h)(-x+8).(x-54).(-24-x)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}-x+8=0\\x-54=0\\-24-x=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}-x=8\\x=0+54\\-x=0+24\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=8\\x=54\\-x=24\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=8\\x=54\\x=-24\end{matrix}\right.\)
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
ta thấy \(\left|2x-8\right|\ge0\forall x\)
\(\left|32-8x\right|\ge0\forall x\)
\(\Rightarrow\left|2x-8\right|+\left|32-8x\right|\ge0\forall x\)(1)
Để \(\left|2x-8\right|+\left|32-8x\right|=0\)(2)
Từ (1)và (2)
\(\Rightarrow\orbr{\begin{cases}\left|2x-8\right|=0\\\left|32-8x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-8=0\\32-8x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=4\end{cases}}}\)
KL x=4