(X mũ2-y mũ2) tất cả mũ2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/3 = y/7 = z/5 = k
=> x=3k , y=7k , z=5k
x^2-y^2+z^2=-60
=> (3k)^2 - (7k)^2 + (5k)^2 =-60
=>3^2.k^2 - 7^2.k^2 + 5^2.k^2 = -60
=>k^2(3^2 - 7^2 + 5^2) = -60
=>k^2.(-15) = -60
=>k^2 = 4
=> k=2 hoặc k=-2
Với k=2 => x=3.2=6
y=7.2=14
z=5.2=10
Với k=-2 => x=3.(-2)=-6
y=7(-2)=-14
z=5(-2)=-10
Đặt: \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}=k\)
=> \(x=3k;\)\(y=7k;\)\(z=5k\)
Theo bài ra ta có:
\(x^2-y^2+z^2=-60\)
\(\Leftrightarrow\)\(9k^2-49k^2+25k^2=-60\)
\(\Leftrightarrow\)\(k^2=4\)
\(\Leftrightarrow\)\(k=\pm2\)
Nếu \(k=2\)thì: \(x=6;\)\(y=14;\)\(z=20\)
Nếu \(k=-2\)thì: \(x=-6;\)\(y=-14;\)\(z=-20\)
(x^2-4).(x^2-9)=0
=>x^2-4=0 hoặc x^2-9=0 <=> x^2=4 hoặc x^2=9 <=>x thuộc {2;-2} hoặc x thuộc {3;-3}
\(\left(x^2-4\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=\pm3\end{cases}}\)
Vậy \(x\in\left\{\pm2;\pm3\right\}\)
_Chúc bạn học tốt_
Vì a/b= c/d => a/c = b/d => a2 / c2 = b2 / d2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a2 / c2 = b2 / d2 =ab/cd = a2 - b2 / c2 -d2 (đpcm)
(1.2 + 2.3 + 3.4 + ... + 2018.2019) - (12 + 22 + ... + 20182)
= (1.2 + 2.3 + ... + 2018.2019) - (1.1 + 2.2 + ... + 2018.2018)
= (1.2 + 2.3 + ... + 2018.2019) - [1.(2 - 1) + 2.(3 - 1) + ... + 2018.(2019 - 1)]
= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019 - 1 - 2 - 3 - ... - 2018)
= (1.2 + 2.3 + ... + 2018.2019) - [1.2 + 2.3 + ... + 2018.2019 - (1 + 2 + ... + 2018)]
= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019) + (1 + 2 + 3 + ... + 2018)
= 1 + 2 + ... + 2018 (có : (2018 - 1) : 1 + 1 = 2018 (số))
= (2018 + 1).2018 : 2
= 2037171
`(x^{2}-y^{2})^{2}`
`=(x^{2})^{2}-2.x^{2}.y^{2}+(y^{2})^{2}`
`=x^{4}-2x^{2}y^{2}+y^{4}`