Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)
Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)
\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)
\(\Rightarrow A=\dfrac{36}{49}\)
Đề sai, tớ sửa lại
Ta có :
\(A=2+2^2+..............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...........+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+.........+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...........+2^{59}.3\)
\(\Leftrightarrow A=3\left(2+2^2+..........+2^{59}\right)\)
\(\Leftrightarrow A⋮3\rightarrowđpcm\)
Lại có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+..........+2^{59}\left(1+2+2^2\right)\)
\(\Leftrightarrow A=2.7+2^4.7+............+2^{58}.7\)
\(\Leftrightarrow A=7\left(2+2^3+..........+2^{58}\right)\)
\(\Leftrightarrow A⋮7\rightarrowđpcm\)
Ta tiếp tục có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+..............+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+.............+2^{57}\left(1+2+2^2+2^3\right)\)
\(\Leftrightarrow A=2.15+............+2^{57}.15\)
\(\Leftrightarrow A=15\left(2+.........+2^{57}\right)\)
\(\Leftrightarrow A⋮15\rightarrowđpcm\)
\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại
=> (x-2).(x-4)<0 <=> 2<x<4
b. ta có\(x^2+1>0\forall x\)
=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1
<=> -1<x<1
câu c bạn làm tương tự
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
a) 4.(-5)2+(-2)3.25
= 4.25+(-8).25
=25.[4+(-8)]
=25.(-4)
=-100
b)\(15\dfrac{3}{7}-\left(\dfrac{7}{15}+9\dfrac{4}{7}\right)\)
= \(15\dfrac{3}{7}-\dfrac{7}{15}-9\dfrac{4}{7}\)
= \(\left(15\dfrac{3}{7}-9\dfrac{4}{7}\right)-\dfrac{7}{15}\)
=\(\left(14\dfrac{10}{7}-9\dfrac{4}{7}\right)-\dfrac{7}{15}\)
=\(5\dfrac{1}{7}-\dfrac{7}{15}\)
=\(\dfrac{36}{7}-\dfrac{7}{15}\)
=\(\dfrac{540}{105}-\dfrac{49}{105}\)
=\(\dfrac{491}{105}\)
\(\)a) 4.(-5)2+(-2)3.25
\(=4.5^2+\left(-2\right)^3.25\)
\(=4.25+\left(-8\right).25\)
\(=100+\left(-200\right)\)
\(=-100\)
b) \(15\dfrac{3}{7}-\left(\dfrac{7}{15}+9\dfrac{4}{7}\right)\)
\(=\dfrac{108}{7}-\left(\dfrac{7}{15}+\dfrac{67}{7}\right)\)
\(=\dfrac{108}{7}-\dfrac{1054}{105}\)
\(=\dfrac{566}{105}\)
\(D=1+3^2+3^4+...+3^{98}+3^{100}\)
\(3^2D=3^2\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)
\(9D=3^2+3^4+3^6+...+3^{100}+3^{102}\)
\(9D-D=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+...+3^{100}\right)\)
\(8D=3^{102}-1\Rightarrow D=\dfrac{3^{102}-1}{8}\)
1/
2100=(210)10=102410>100010=10302100=(210)10=102410>100010=1030
2100=231.26.263=231.64.5127<231.125.6257=231.53.(54)7=231.531=10312100=231.26.263=231.64.5127<231.125.6257=231.53.(54)7=231.531=1031
1030<2100<10311030<2100<1031
vậy 21002100 có 31 chữ số.