tính giá trị của biểu thức : A = 4x 2-12xy+9y2 tại x=1/2 , y=2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(x-3y)^2-15=[37-3(-1)]^2-15=40^2-15=1585$
Câu 1 Thực hiện phép tính :
a) 2x( 3x2 - 4x + 2 )
b) 2x( 3x + 5 ) - 3 ( 2x2 - 2x + 3 )
GIẢI GIÙM EM ĐC KO Ạ
a) 2x-5y+4y+2x
=4x+y
Tai x=3 y=-12 thi
4x3+(-12)=12-12=0
b)3x+4y-2x-3y
\(a,A=\left(x+5\right)^3=\left(-10+5\right)^3=\left(-5\right)^3=-125\\ b,B=\left(2x+3y\right)^2=\left(2\cdot1+3\cdot2\right)^2=7^2=49\\ c,C=\left(3x-y\right)^3=\left(3\cdot1+2\right)^3=5^3=125\)
a: \(\left(3x-1\right)\left(9x^2+3x+1\right)=27x^3-1\)
b: \(\left(1-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{5}+1\right)=1-\dfrac{x^3}{125}\)
c: \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
d: \(\left(4x+3y\right)\left(16x^2-12xy+9y^2\right)=64x^3+27y^3\)
\(=\sqrt{\left(x+2y^2\right)^2}-\sqrt{\left(2x-3y^2\right)^2}\)\(=x+2y^2-3y^2+2x=3x-y^2=3\cdot\sqrt{2}-1\)
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
A = 4x2 - 12 xy + 9y2
A = (2x)2 - 2.2x.3y + (3y)2
A = (2x - 3y)2
A(1/2;2/3) = (2. \(\dfrac{1}{2}\) - 3.\(\dfrac{2}{3}\))2 = (1-2)2 =(-12) = 1