giải phương trình x(x+3)+a(a-3)=2(ax-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)
Thay \(a=-\sqrt{2}\) vào pt :
\(\left\{{}\begin{matrix}\left(-\sqrt{2}+1\right)x-y=3\left(1\right)\\-\sqrt{2}x+y=-\sqrt{2}\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right):\)
\(\left(-\sqrt{2}+1-\sqrt{2}\right)x=3-\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{3-\sqrt{2}}{1-2\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{1-5\sqrt{2}}{7}\)\(\left(3\right)\)
Thay \(\left(3\right)\) vào \(\left(2\right)\) : \(-\sqrt{2}.\dfrac{1-5\sqrt{2}}{7}+y=-\sqrt{2}\)
\(\Rightarrow y=\)\(-\sqrt{2}+\dfrac{6\sqrt{2}}{7}\)
\(\Rightarrow y=-\dfrac{\sqrt{2}}{7}\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{1-5\sqrt{2}}{7};-\dfrac{\sqrt{2}}{7}\right)\)
a, Thay a = 3 hệ phương trình là :
\(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\3x+2y=3\left(2\right)\end{cases}}}\)
Thay (1) vào (2) suy ra :
\(3\left(1-y\right)+2y=3\Leftrightarrow3-3y+2y=3\)
\(\Leftrightarrow5y=0\Leftrightarrow y=0\)thế lại vào (1) ta được :
\(x=1-y=1-0=1\)
\(\hept{\begin{cases}x+y=1\\ax+2y=a\end{cases}}\)
a) Với a = 3
hpt ⇔ \(\hept{\begin{cases}x+y=1\left(1\right)\\3x+2y=3\left(2\right)\end{cases}}\)
Nhân 2 vào từng vế của (1)
hpt ⇔ \(\hept{\begin{cases}2x+2y=2\left(3\right)\\3x+2y=3\end{cases}}\)
Lấy (3) - (2) theo vế
⇒ -x = -1 ⇒ x = 1
Thế x = 1 vào (1)
⇒ 1 + y = 1 ⇒ y = 0
Vậy \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
a: =>-x+2x=3-7
=>x=-4
b: =>6x+2+2x-5=0
=>8x-3=0
hay x=3/8
c: =>5x+2x-2-4x-7=0
=>3x-9=0
hay x=3
d: =>10x2-10x2-15x=15
=>-15x=15
hay x=-1
x(x+3)+a(a-3)=2(ax-1)
<=>x2+3x+a2-3a=2ax-2
<=>x2+3x+a2-3a-2ax=-2
<=>(a2-2ax+x2)+(3x-3a)=-2
<=>(a-x)2-3(a-x)=-2
Đặt y=a-x
phương trình trở thành:
y2-3y=-2
<=>y2+3y+2=0
<=>y2+y+2y+2=0
<=>y(y+1)+2(y+1)=0
<=>(y+1)(y+2)=0
<=>y+1=0 hoặc y+2=0
<=> y=-1 hoặc y=-2
=> a-x=-1 hoặc a-x=-2
tớ không chắc mình làm đúng nhé, mấy bạn thấy mình có gì sai thì chỉnh sửa lại giúp mình nhé:):):)