K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

a, Thay a = 3 hệ phương trình là : 

\(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\3x+2y=3\left(2\right)\end{cases}}}\)

Thay (1) vào (2) suy ra : 

\(3\left(1-y\right)+2y=3\Leftrightarrow3-3y+2y=3\)

\(\Leftrightarrow5y=0\Leftrightarrow y=0\)thế lại vào (1) ta được : 

\(x=1-y=1-0=1\)

15 tháng 1 2021

\(\hept{\begin{cases}x+y=1\\ax+2y=a\end{cases}}\)

a) Với a = 3

hpt ⇔ \(\hept{\begin{cases}x+y=1\left(1\right)\\3x+2y=3\left(2\right)\end{cases}}\)

Nhân 2 vào từng vế của (1)

hpt ⇔ \(\hept{\begin{cases}2x+2y=2\left(3\right)\\3x+2y=3\end{cases}}\)

Lấy (3) - (2) theo vế

⇒ -x = -1 ⇒ x = 1

Thế x = 1 vào (1)

⇒ 1 + y = 1 ⇒ y = 0

Vậy \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)

Khi m=3 thì hệ sẽ là:

3x+2y=5 và 5x+4y=8

=>x=2 và y=-1/2

b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)

=>m^2+m<>4m-2

=>m^2-3m+2<>0

=>m<>1 và m<>2

hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)

=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)

=>Ko có m thỏa mãn

Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1

=>m=2 hoặc m=1

NV
29 tháng 1 2021

a. Bạn tự giải.

b.

\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)

\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)

\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)

\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên

a: Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x+2y=1\\3x+4y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

b: Tham khảo:

a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)

Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)

=>-3y=-2 và x+2y=3

=>y=2/3 và x=3-2y=3-4/3=5/3

2:

a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)

=>a^2<>1

=>a<>1 và a<>-1

Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a=2a

=>a=1

Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a<>2a

=>a=-1

1: mx+y=2m+2 và x+my=11

Khi m=-3 thì hệ sẽ là:

-3x+y=-6+2=-4 và x-3y=11

=>-3x+y=-4 và 3x-9y=33

=>-8y=29 và 3x-y=4

=>y=-29/8 và 3x=y+4=3/8

=>x=1/8 và y=-29/8

2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)

=>m^2<>1

=>m<>1 và m<>-1

Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)

=>(m=1 hoặc m=-1) và (11m=2m+2)

=>\(m\in\varnothing\)

Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11

=>m=1 hoặc m=-1

11 tháng 9 2023

bạn giúp mình trả lời câu hỏi toán mình mới đăng trong trang của mình được ko ạ