Tìm số nguyên x biết:
a) - 8 . (x+2) < 0
b) 10 . (3-x) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+12\right)\left(x-6\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-12\\x>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< -12\\x< 6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\)
\(b,\left(10-x\right)\left(3-x\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>10\\x< 3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\\ \Rightarrow x\in\left\{...;-15;-14;-13;7;8;9;...\right\}\\ b,\Rightarrow\left(x-10\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>10;x< 3\left(\text{loại}\right)\\3< x< 10\end{matrix}\right.\\ \Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
\(\left(2x-3\right)^2=7^2\)
\(2x-3=7\)
\(2x=10\)
\(x=5\)
Vậy x=5
a: \(\left(2x-3\right)^2-49=0\)
\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
\(a,\left(8+x\right)\left(6-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}8+x=0\\6-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\\ b,x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
a) (8+x).(6-x)=0
<=> 8+x = 0 hoặc 6-x = 0
=> x = -8 hoặc x = 6
b) c) x^2 - 5x=0
<=> x^2 = 0 hoặc -5x = 0
=> x = 0 hoặc x = 5
a) -3<x<4 b)-4<x<4
=>x = -2;-1;0-1-2;3 =>x=-3;-2;-1;0;1;2;3
Tổng là :-2 + -1 + 0 + 1 + 2 +3 Tổng: -3 + -2 + -1 + 0 + 1 + 2 + 3
= (-2+2) + (-1+1) + (0+3) =(-3+3) + (-2+2) + (-1+1) + 0
= 0 + 0 + 3 =0+0+0+0
=3 =0
a: =>x+28=0
=>x=-28
b: =>27-x=0 hoặc x+9=0
=>x=27 hoặc x=-9
c: =>x=0 hoặc x-43=0
=>x=0 hoặc x=43
a)\(\dfrac{4}{x}=\dfrac{x}{16}\)
<=>\(x^2=4.16=64\)
<=>\(x=\pm8\)
<=>x=-8(vì x<0)
b)\(\dfrac{x}{-24}=\dfrac{-6}{x}\)
<=>\(x^2=\left(-24\right)\left(-6\right)=144\)
<=>\(x=\pm12\)
<=>x=12(Vì x>0)
\(a.\)
\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(S=\left\{8,-2\right\}\)
\(b.\)
\(\left(4x-3\right)-\left(x+5\right)=3\cdot\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{38}{6}\)
\(S=\left\{\dfrac{38}{6}\right\}\)
a) (x - 8 )( x3 + 8) = 0
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x^3=-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b)(4x - 3) – ( x + 5) = 3(10 - x)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow3x-8=30-3x\)
\(\Leftrightarrow3x-8-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
a)
<=> -8x - 16 < 0
<=> -8x < 0 + 16
<=> -8x < 16
<=> x < 16 : (-8)
<=> x < -2
b)
<=> 30 - 10x < 0
<=> -10x < 0 - 30
<=> -10x < -30
<=> x < -30 : (-10)
<=> x < 3