Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(9.\left(x+28\right)=0\)
\(\Rightarrow x+28=0\)
\(\Rightarrow x=-28\)
\(\left(27-x\right).\left(x+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}27-x=0\\x+9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=27\\x=-9\end{cases}}\)
\(\left(-x\right).\left(x-43\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x=0\\x-43=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=43\end{cases}}\)
a) 9 . ( x + 28 ) = 0 <=> x = -28
b) (27-x)(x+9)= 0 <=> x = 27 hoac x = -9
c) (-x)(x-43)=0 <=> x =0 hoac x = 43
\(a,\left(x+12\right)\left(x-6\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-12\\x>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< -12\\x< 6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\)
\(b,\left(10-x\right)\left(3-x\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>10\\x< 3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\\ \Rightarrow x\in\left\{...;-15;-14;-13;7;8;9;...\right\}\\ b,\Rightarrow\left(x-10\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>10;x< 3\left(\text{loại}\right)\\3< x< 10\end{matrix}\right.\\ \Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a)\(\dfrac{4}{x}=\dfrac{x}{16}\)
<=>\(x^2=4.16=64\)
<=>\(x=\pm8\)
<=>x=-8(vì x<0)
b)\(\dfrac{x}{-24}=\dfrac{-6}{x}\)
<=>\(x^2=\left(-24\right)\left(-6\right)=144\)
<=>\(x=\pm12\)
<=>x=12(Vì x>0)
a: x:(-9)=-54
=>\(x=\left(-54\right)\cdot\left(-9\right)\)
=>\(x=54\cdot9=486\)
b: \(x:\left(-12\right)=18\)
=>\(x=18\cdot\left(-12\right)=-216\)
c: \(x:\left(-5\right)=-19\)
=>\(x:5=19\)
=>\(x=19\cdot5=95\)
d: \(\left(x-28\right):\left(-12\right)=-5\)
=>\(x-28=\left(-12\right)\cdot\left(-5\right)=60\)
=>x=60+28=88
e: \(\left(x+15\right):\left(-28\right)=8\)
=>x+15=-28*8=-224
=>x=-224-15=-239
f: (x+30):(-45)=-4
=>\(x+30=\left(-45\right)\cdot\left(-4\right)=180\)
=>x=180-30
=>x=150
a) x : (-9) = -54
x= -54 . (-9)= 486
________
b) x : (-12) = 18
x= 18. (-12)= -216
_________
c) x : (-5) = -19
x= (-19). (-5)= 95
__________
d) (x - 28) : (-12) = -5
(x-28)= (-5). (-12)= 60
x= 60+28= 88
_______
e) (x + 15) : (-28) = 8
(x+15)= 8. (-28)= -224
x= -224 - 15 = - 239
__________
f) (x + 30) : (-45) = -4
(x+30)= -4. (-45)= 180
x= 180 - 30=150
a)\(x-5=-1\)
⇔\(x=4\)
b)\(x+30=-4\)
⇔\(x=-34\)
c)\(x-\left(-24\right)=3\)
⇔\(x+24=3\)
⇔\(x=-21\)
e)\(\left(x+5\right)+\left(x-9\right)=x+2\)
⇔\(x+5+x-9-x-2=0\)
⇔\(x-6=0\)
⇔\(x=6\)
f)\(\left(27-x\right)+\left(15+x\right)=x-24\)
⇔\(27-x+15+x-x+24=0\)
⇔\(66-x=0\)
⇔\(x=66\)
\(a.x-5=-1\) \(b.x+30=-4\)
\(x=\left(-1\right)+5\) \(x=\left(-4\right)-30\)
\(x=4\) \(x=-34\)
\(c.x-\left(-24\right)=3\) \(e.\left(x+5\right)+\left(x-9\right)=x+2\)
\(x=3+\left(-24\right)\) \(x+5+x-9=x+2\)
\(x=-21\) \(2x-4=x+2\)
\(2x-x=2+4\)
\(x=6\)
\(f.\left(27-x\right)+\left(15+x\right)=x-24\)
\(27-x+15+x=x-24\)
\(27+15=x-24\)
\(42=x-24\)
\(x=24+42\)
\(x=66\)
a: =>x+28=0
=>x=-28
b: =>27-x=0 hoặc x+9=0
=>x=27 hoặc x=-9
c: =>x=0 hoặc x-43=0
=>x=0 hoặc x=43