Cho tam giác ABC có góc B>C, BH,CK là đường cao. Cm BH<CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K K' H
Ta có: \(AC-AB>CK-BH\) (*)
\(\Leftrightarrow AC+BH>AB+CK\)
\(\Leftrightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)
\(\Leftrightarrow AC^2+BH^2+2.AC.BH>AB^2+CK^2+2.AB.CK\)
\(\Leftrightarrow AC^2+BH^2+4S_{ABC}>AB^2+CK^2+4S_{ABC}\)
\(\Leftrightarrow AC^2+BH^2>AB^2+CK^2\)
\(\Leftrightarrow AK>AH\) (**)
Xét tam giác ABC có \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
Trên AC lấy điểm B' sao cho AB' = AB \(\Rightarrow AB'< AC\Rightarrow\) B' nằm giữa A và C. (1)
Kẻ B'K' vuông góc AB tại K'.Suy ra B'K' // KC (2)
Từ (1) và (2) suy ra K' nằm giữa A và K hay AK' < AK
Ta thấy ngay \(\Delta ABH=\Delta ACK'\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK'\Rightarrow AK>AH\)
Vậy (**) đúng hay (*) đúng.
A B C K H
Ta có tam giác AKC vuông tại K
=> AC là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=>AC > CK
Ta có tam giác ABH vuông tại H
=> AB là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=> AB > BH
Có: AC>CK;
AB>BH (cmt)
=> AC-AB > CK-BH
a) Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90\left(gt\right)\)
BC: cạnh chung
\(\widehat{KBC}=\widehat{HCB}\left(gt\right)\)
=> ΔKBC=ΔHCB(ch-gn)
=>BK=HC
b) Có: AB=AK+KB
AC=AH+HC
Mà: AB=AC(gt); BK=HC(gt0
=>AK=AH
=>ΔAKH cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra: \(\widehat{AKB}=\widehat{ABC}\) . Mà hai góc này ở vị trí đồng vị
=> KH//BC
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)
=>BCHK là hình thang cân
a) ta có tam giác ABC cân tại A => hai đường cao BH vafCK cũng bằng nhau
b) ta có tam giác HBC = tam gác KCB
=> BK=CH
mặt khác KH//BC
=> BCHK là hình thang cân
c) góc BAC=40
=> B=C=(180-40):2=70
ta có K+B=180
=> K=H=180-70=110
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn
SABC=\(\frac{AC.BH}{2}\)=\(\frac{AB.CK}{2}\)
=>AC.BH=AB.CK(1)
Vì tam giác ABC có Góc B>A=>Ac>AB(2)(góc vá cạnh đối diện)
Từ 1,2 =>BH<CK