K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

y x 9 + y x 8 = 170

y x ( 9 + 8 ) = 170

y x 17 = 170

y = 170 : 17

y = 10

5 tháng 1 2017

y x 9 + y x 8 = 170

y x ( 9 + 8 ) = 170

y x 17 = 170

       y = 170 / 17

       y = 10                 Smart gril

12 tháng 4 2018

E = x^(4)*y^(4)+x^(5)*y^(5)+x^(6)*y^(6)+x^(7)*y^(7)+x^(8)*y^(8)+x^(9)*y^(9)+x^(10)*y^(10) tại x=-1, y=1 nha

20 tháng 7 2018

Theo đề bài: \(\dfrac{x}{y}=\dfrac{8}{9}\Rightarrow x=\dfrac{8y}{9}\) \(\left(1\right)\)\(x+y=-170\)\(\left(2\right)\)

Thay \(\left(1\right)\) vào \(\left(2\right)\), ta có: \(\dfrac{8y}{9}+y=-170\)

\(\Leftrightarrow\dfrac{8y}{9}+\dfrac{9y}{9}=-170\)

\(\Leftrightarrow\dfrac{17y}{9}=-170\)

\(\Leftrightarrow17y=-1530\)

\(\Leftrightarrow y=-90\)

Thay \(y=-90\) vào \(\left(2\right)\) suy ra: \(x+\left(-90\right)=-170\)

\(\Rightarrow x=-80\)

Vậy \(x=-80;y=-90\)

9 tháng 9 2023

\(xy+x+y=170\left(n\inℕ\right)\)

\(\Rightarrow x\left(y+1\right)+y+1-1=170\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=171\)

\(\Rightarrow\left(x+1\right);\left(y+1\right)\in U\left(171\right)=\left\{1;3;9;19;57;171\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(0;170\right);\left(2;56\right);\left(8;18\right);\left(18;8\right);\left(56;2\right);\left(170;0\right)\right\}\)

a: \(A=y^2-8y-x\left(8-y\right)\)

\(=y\left(y-8\right)+x\left(y-8\right)\)

\(=\left(y-8\right)\left(x+y\right)\)

\(=100\cdot100=10000\)

 

 

7 tháng 7 2016

\(1,a,\frac{x}{10}-\frac{1}{y}=\frac{3}{10}=>\frac{x}{10}-\frac{3}{10}=\frac{1}{y}=>\frac{x-3}{10}=\frac{1}{y}=>\left(x-3\right).y=1.10=10\)

bn liệt kê bảng các ước của 10 ra là đc (chỉ lấy ước tự nhiên)

câu sau tương tự

\(2,\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Do vai trò của x,y,z như nhau nên giả sử \(1\le x\le y\le z\)

\(=>\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}=>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}=>1\le\frac{3}{x}=>x\le3=>x\in\left\{1;2;3\right\}\)

\(\left(+\right)x=1=>\frac{1}{y}+\frac{1}{z}=0\) (vô lí)

\(\left(+\right)x=2=>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}=>\frac{y+z}{yx}=\frac{1}{2}=>2\left(y+z\right)=yz=>2y+2z=yz\)

\(=>2y+2z-yz=0=>2y-yz+2z=0=>y\left(2-z\right)+2z-4=-4\)

\(=>y\left(2-z\right)-4+2x=-4=>y\left(2-z\right)-2\left(2-z\right)=-4=>\left(y-2\right)\left(2-z\right)=-4\)

Tìm đc (y;z)=(4;4);(3;6)

\(\left(+\right)x=3=>\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)

Nếu \(y=3=>z=3\)

Nếu \(y\ge4=>\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)

Vậy (x;y;z) là (2;4;4);(2;3;6);(3;3;3) và các hoán vị của chúng

2 câu a và c, rất dễ,bn vận dụng theo phương pháp sử dụng bất đẳng thức như mk vừa làm là đc