2x=18/x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2 + 2x = a ta có
\(\frac{1}{a-3}\)+ \(\frac{18}{a+2}\)= \(\frac{18}{a+1}\)
<=> a2 - 15a + 56 = 0
<=> a = (7;8)
Thế vô tìm được nghiệm
\(\dfrac{1}{x^2+2x-3}+\dfrac{18}{x^2+2x+2}=\dfrac{18}{x^2+2x+1}\left(1\right)\)
ĐK: \(x\ne\pm1,x\ne-3\)
Đặt \(y=x^2+2x+1\) (với y > 0,y khác 4) ta được:
\(\left(1\right)\Leftrightarrow\dfrac{1}{y-4}+\dfrac{18}{y+1}=\dfrac{18}{y}\Leftrightarrow\dfrac{y\left(y+1\right)}{y\left(y+1\right)\left(y-4\right)}+\dfrac{18y\left(y-4\right)}{y\left(y+1\right)\left(y-4\right)}=\dfrac{18\left(y+1\right)\left(y-4\right)}{y\left(y+1\right)\left(y-4\right)}\Rightarrow y\left(y+1\right)+18y\left(y-4\right)=18\left(y+1\right)\left(y-4\right)\Leftrightarrow y^2+y+18y^2-72y=18y^2-54y-72\Leftrightarrow y^2-17y+72=0\Leftrightarrow\left(y-8\right)\left(y-9\right)=0\Leftrightarrow\left[{}\begin{matrix}y=8\left(TM\right)\\y=9\left(TM\right)\end{matrix}\right.\)
Với \(y=8\) ta có :
\(x^2+2x+1=8\Leftrightarrow\left(x+1\right)^2=8\Leftrightarrow x+1=\pm\sqrt{8}\Leftrightarrow x=\pm\sqrt{8}-1\)
Với y=9 ta có:
\(x^2+2x+1=9\Leftrightarrow\left(x+1\right)^2=9\Leftrightarrow x+1=\pm\sqrt{9}\Leftrightarrow x=\pm\sqrt{9}-1\)
ĐKXĐ : \(x\ne1;-3\)
Đặt \(x^2+2x+1=a\) , ta có :
\(\frac{1}{a-4}+\frac{18}{a+1}=\frac{18}{a}\)
\(\Leftrightarrow\frac{a+1+18a-72}{\left(a+1\right)\left(a-4\right)}=\frac{18}{a}\)
\(\Leftrightarrow\frac{19a-71}{a^2-3a-4}=\frac{18}{a}\)
\(\Leftrightarrow19a^2-71a-18a^2+54a+72=0\)
\(\Leftrightarrow a^2-17a+72=0\)
\(\Leftrightarrow\left(a-8\right)\left(a-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=8\\a=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=8\\\left(x+1\right)^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{8}-1\\\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
Thay x = 1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k), ta có:
2(2.1+1)+18=3(1+2)(2.1+k)
⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)
⇔6+18=18+9k⇔24−18=9k⇔6=9k
⇔k=69=232(2.1+1)+18=3(1+2)(2.1+k)
⇔2(2+1)+18=3.3(2+k)
⇔2.3+18=9(2+k)
⇔6+18=18+9k
⇔24−18=9k⇔6=9k
⇔k=\(\frac{6}{9}\)=\(\frac{2}{3}\)
Vậy khi thì phương trình có nghiệm x = 1
a. Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Thay x = 1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k), ta có:
2(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=69=232(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=\(\frac{6}{9}\)=\(\frac{2}{3}\)
Vậy khi thì phương trình có nghiệm x = 1
1e) Để \(\frac{2x-1}{x-3}\) nguyên thì \(2x-1⋮x-3\)
\(\Leftrightarrow2x-6+5⋮x-3\)
\(\Leftrightarrow2\left(x-3\right)+5⋮x-3\)
Do \(2\left(x-3\right)⋮x-3\) \(\Rightarrow5⋮x-3\)
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow x\in\left\{-2;2;4;8\right\}\)
Vậy:...................
\(\dfrac{5x}{2x-3}-\dfrac{x-18}{3-2x}-\dfrac{16x}{2x-3}=\dfrac{5x+x-18-16x}{2x-3}=\dfrac{-10x-18}{2x-3}\)
2x=18/x => 18/2=x^2=36=3^2=> x=3
vậy nha
2x = 18 x-
2x x = 18 +
3x = 18
x = 18, 3
x = 6