K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2022

`a.` `yxx3+yxx2=6665`

       `=>yxx5=6665`

         `=>`y=6665/5`

         `=>y=1333`

`b.` `yxx9-yxx5=9484`

       `=>yxxx4=9484`

       `=>y=2371`

15 tháng 9 2022

A, y x 3 + y x 2 = 6665

y x ( 3 + 2 ) = 6665

y x 5 = 6665

y = 6665 : 5

y = 1333

B, y x 9 - y x 5 = 9484

y x ( 9 - 5 ) = 9484

y x 4 = 9484

y = 9484 : 4

y = 2371

20 tháng 8 2023

c)\(\dfrac{3}{8}\times\dfrac{5}{8}+y=\dfrac{5}{4}\) 

   \(\dfrac{15}{64}+y=\dfrac{5}{4}\) 

           \(y=\dfrac{5}{4}-\dfrac{15}{64}\) 

           \(y=\dfrac{65}{64}\)

d, \(\dfrac{3}{8}+\dfrac{5}{8}\times y=\dfrac{5}{4}\) 

          \(\dfrac{5}{8}\times y=\dfrac{5}{4}-\dfrac{3}{8}\) 

          \(\dfrac{5}{8}\times y=\dfrac{7}{8}\) 

                 \(y=\dfrac{7}{8}:\dfrac{5}{8}\) 

                \(y=\dfrac{7}{5}\)

   

21 tháng 8 2023

 a, 3/4 x y = 3/5 + 3/10   

3/4 x y = 9/10

y = 9/10 : 3/4

y = 6/5

b, 3/5 : y = 3/4 - 2/5

3/5 : y = 7/20

y = 3/5 : 7/20 

y = 12/7

 

30 tháng 7 2023

a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).

Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)

b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)

=>

       x       1          5       -1       -5
      y+1       5          1       -5       -1
       y       4          0        -6       -2

Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).

c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)

=>

       x-2        1           7         -1         -7
      y+3        7          1         -7         -1
       x       3          9         1        -5
      y        4         -2         -10         -4

Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

27 tháng 9 2020

a, \(|x-1|+|2x-y+3|=0\)

Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

b, \(|x-y|+|x+y-2|=0\)

Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

c, \(|x+y-1|+|2x-3y|=0\)

Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)

\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)

27 tháng 9 2020

a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

1 tháng 8 2021

Ta có : ax = by \(\Rightarrow\frac{x}{b}=\frac{y}{a}=\frac{x-y}{b-a}=1\left(\text{vì }x-y=b-a\right)\)

\(\Rightarrow x=b;y=a\)

Vậy x = b ; y = a