K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

\(2\left|2-x\right|+\left|2x+1\right|=x-3\)

TH1: \(x\le-\frac{1}{2}\)

\(\Leftrightarrow2\left(2-x\right)+\left[-\left(2x+1\right)\right]=-\left(x-3\right)\)\(\Leftrightarrow4-2x-2x-1=3-x\)

\(\Leftrightarrow3-4x=3-x\)\(\Leftrightarrow-3x=0\)\(\Leftrightarrow x=0\)(loại)

TH2: \(-\frac{1}{2}< x\le2\)

\(\Leftrightarrow2\left(2-x\right)+2x+1=-\left(x-3\right)\)\(\Leftrightarrow4-2x+2x+1=3-x\)

\(\Leftrightarrow5=3-x\)\(\Leftrightarrow x=-2\)(loại)

TH3:\(2< x\le3\)

\(\Leftrightarrow2\left[-\left(2-x\right)\right]+2x+1=-\left(x-3\right)\)\(\Leftrightarrow2x-4+2x+1=3-x\)

\(\Leftrightarrow4x-3=3-x\)\(\Leftrightarrow5x=6\)\(\Leftrightarrow x=\frac{6}{5}\)(loại)

TH4: x > 3

\(\Leftrightarrow2\left[-\left(2-x\right)\right]+2x+1=x-3\)\(\Leftrightarrow2x-4+2x+1=x-3\)

\(\Leftrightarrow4x-3=x-3\)\(\Leftrightarrow3x=0\)\(\Leftrightarrow x=0\)(loại)

Vậy pt vô nghiệm

10 tháng 11 2021

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

2 tháng 7 2023

Đặt x+ 3x + 3 = a ;  x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d

Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1) 

và a + b + c + d = 0

Khi đó ta có (1) <=>  (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0

<=> ab(a + b) + cd(c + d) = 0

<=> (a + b)(ab - cd) = 0   

<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)

Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1

<=> x2 + x + 1 = 0 

<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)

=> Phương trình vô nghiệm

Với ab = cd 

\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)

\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)

30 tháng 6 2023

x = -1

19 tháng 6 2021

a) đk: x khác 1; \(\dfrac{3}{2}\)

 \(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)

\(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)

\(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)

b) Có \(\left|3x-2\right|+1=5\)

<=> \(\left|3x-2\right|=4\)

<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)

TH1: Thay x = 2 vào P, ta có:

P = \(\dfrac{-1}{2.2-3}=-1\)

TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:

P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)

c) Để P > 0

<=> \(\dfrac{-1}{2x-3}>0\)

<=> 2x - 3 <0

<=> x < \(\dfrac{3}{2}\) ( x khác 1)

d) P = \(\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)

<=> 2x - 3 = x2 - 6

<=> x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)

PT \(\Rightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)

\(\Rightarrow-4x=-4\) \(\Leftrightarrow x=1\)

Vậy \(x=1\)

Ta có: \(2x\left(x+1\right)-3\left(x+2\right)=x\left(2x-1\right)+4\left(x-2\right)-2\)

\(\Leftrightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)

\(\Leftrightarrow2x^2-x-6=2x^2+3x-10\)

\(\Leftrightarrow2x^2-x-6-2x^2-3x+10=0\)

\(\Leftrightarrow-4x+4=0\)

\(\Leftrightarrow-4x=-4\)

hay x=1

Vậy: x=1

 

\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)

=>2x=-4

hay x=-2