tìm x biết 2|2-x|+|2x+1|=x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Đặt x2 + 3x + 3 = a ; x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d
Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1)
và a + b + c + d = 0
Khi đó ta có (1) <=> (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0
<=> ab(a + b) + cd(c + d) = 0
<=> (a + b)(ab - cd) = 0
<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)
Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1
<=> x2 + x + 1 = 0
<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)
=> Phương trình vô nghiệm
Với ab = cd
\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)
\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
PT \(\Rightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)
\(\Rightarrow-4x=-4\) \(\Leftrightarrow x=1\)
Vậy \(x=1\)
Ta có: \(2x\left(x+1\right)-3\left(x+2\right)=x\left(2x-1\right)+4\left(x-2\right)-2\)
\(\Leftrightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)
\(\Leftrightarrow2x^2-x-6=2x^2+3x-10\)
\(\Leftrightarrow2x^2-x-6-2x^2-3x+10=0\)
\(\Leftrightarrow-4x+4=0\)
\(\Leftrightarrow-4x=-4\)
hay x=1
Vậy: x=1
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)
=>2x=-4
hay x=-2
\(2\left|2-x\right|+\left|2x+1\right|=x-3\)
TH1: \(x\le-\frac{1}{2}\)
\(\Leftrightarrow2\left(2-x\right)+\left[-\left(2x+1\right)\right]=-\left(x-3\right)\)\(\Leftrightarrow4-2x-2x-1=3-x\)
\(\Leftrightarrow3-4x=3-x\)\(\Leftrightarrow-3x=0\)\(\Leftrightarrow x=0\)(loại)
TH2: \(-\frac{1}{2}< x\le2\)
\(\Leftrightarrow2\left(2-x\right)+2x+1=-\left(x-3\right)\)\(\Leftrightarrow4-2x+2x+1=3-x\)
\(\Leftrightarrow5=3-x\)\(\Leftrightarrow x=-2\)(loại)
TH3:\(2< x\le3\)
\(\Leftrightarrow2\left[-\left(2-x\right)\right]+2x+1=-\left(x-3\right)\)\(\Leftrightarrow2x-4+2x+1=3-x\)
\(\Leftrightarrow4x-3=3-x\)\(\Leftrightarrow5x=6\)\(\Leftrightarrow x=\frac{6}{5}\)(loại)
TH4: x > 3
\(\Leftrightarrow2\left[-\left(2-x\right)\right]+2x+1=x-3\)\(\Leftrightarrow2x-4+2x+1=x-3\)
\(\Leftrightarrow4x-3=x-3\)\(\Leftrightarrow3x=0\)\(\Leftrightarrow x=0\)(loại)
Vậy pt vô nghiệm