K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2022

A = 119 + 118 + 117 +...+111 + 1

A = 119 + 118 + 117 +....+ 111 + 110

A = \(\overline{..1}\)  + \(\overline{...1}\)\(\overline{...1}\)+.......+ \(\overline{..1}\)+ 1

xét dãy số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9

có số số hạng là (9-0): 1 + 1 = 10

vậy tổng A có 10 số hạng có tận cùng bằng 1 

⇔ A = \(\overline{...0}\) ⇔ A ⋮ 5 (đpcm)

9 tháng 9 2022

Hiển nhiên \(11^n\) với \(n\inℕ\) luôn có chữ số tận cùng là 1. Do vậy mà chữ số tận cùng của tổng đã cho phụ thuộc vào \(n\) như sau:

Đặt \(P=11^n+11^{n-1}+11^{n-2}+...+11^2+11+1\)

Nếu \(n=0\Rightarrow P=1\), có chữ số tận cùng là 1.

Nếu \(n=1\Rightarrow P=11+1=12\), có chữ số tận cùng là 2.

Nếu \(n=2\Rightarrow P=11^2+11+1=123\), có chữ số tận cùng là 3.

Đến đây ta đã hiểu được vấn đề: Nếu \(n=n_0\) thì tổng P sẽ có \(n_0+1\) số hạng và hiển nhiên nó sẽ có chữ số tận cùng là \(n_0+1\)

Như vậy, trong trường hợp ở đề bài đã cho thì \(n=9\), tổng A sẽ có 10 số hạng và hiển nhiên sẽ có 2 chữ số tận cùng là 10. Do đó, \(A⋮5\) (nó còn chia hết cho 10 nữa nhưng đề bảo cm nó chia hết cho 5 thì chỉ đến đó thôi)

 

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

9 tháng 11 2021

\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)

Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn

Do đó \(n\left(n+1\right)+1\) lẻ

Vậy \(n^2+n+1⋮̸4\)

9 tháng 11 2021

a) chịu

b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)

18 tháng 6 2017

Dịch k ra viết bằng ct toán đi

15 tháng 8 2016

Bài 1:

a) A = 210+211+212 

=210*(1+21+22)

=210*(1+2+4)

=7*210 chia hết 7

Đpcm

b)7*32=244

=32+64+128

=25+26+27

 

 

15 tháng 8 2016

Bài 2:

a)ko hiểu đề

b)nhân N với * x như dạng lp 6 âý

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?

13 tháng 12 2023

Bài 11:

\(PTHH:2A+Cl_2\rightarrow2ACl\\TheoĐLBTKL:\\ m_A+m_{Cl_2}=m_{ACl}\\ \Leftrightarrow 9,2+m_{Cl_2}=23,4\\ \Rightarrow m_{Cl_2}=23,4-9,2=14,2\left(g\right)\\ n_{Cl_2}=\dfrac{14,2}{71}=0,2\left(mol\right)\\ n_A=2.0,2=0,4\left(mol\right)\\ M_A=\dfrac{9,2}{0,4}=23\left(\dfrac{g}{mol}\right)\\ \Rightarrow A\left(I\right):Natri\left(Na=23\right)\)

6 tháng 5 2021

\(S_{MND}???\)

12 tháng 12 2021

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp