K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2022

B = 2022 .ab = 337.6.ab vì 337 ⋮ 337 ⇔ 337.6.ab ⋮ 337

 ⇔ 2022.ab⋮ 337 (đpcm)

7 tháng 9 2022

\(2022.ab=6.337.ab⋮337\)

AH
Akai Haruma
Giáo viên
11 tháng 2

Lời giải:

Nếu $b\equiv 0\pmod 5$

$\Rightarrow b^2+b+2022\equiv 0^2+0+2022\equiv 2\pmod 5$

$\Rightarrow b^2+b+2022$ chia $5$ dư $2$

Nếu $b\equiv 1\pmod 5$

$\Rightarrow b^2+b+2022\equiv 1^2+1+2022\equiv 4\pmod 5$

$\Rightarrow b^2+b+2022$ chia $5$ dư $4$

Nếu $b\equiv 2\pmod 5$

$\Rightarrow b^2+b+2022\equiv 2^2+2+2022\equiv 3\pmod 5$

$\Rightarrow b^2+b+2022$ chia $5$ dư $3$

Nếu $b\equiv 3\pmod 5$

$\Rightarrow b^2+b+2022\equiv 3^2+3+2022\equiv 4\pmod 5$

$\Rightarrow b^2+b+2022$ chia $5$ dư $4$

Nếu $b\equiv 4\pmod 5$

$\Rightarrow b^2+b+2022\equiv 4^2+4+2022\equiv 2\pmod 5$

$\Rightarrow b^2+b+2022$ chia $5$ dư $2$
Từ các TH trên suy ra $b^2+b+2022$ không chia hết cho $5$.

 

8 tháng 11 2021

ko thể bạn nhé,2022 vẫn chia được cho 21 mà

19 tháng 5 2022

1. vì a>b nên -a<-b ⇔ 2022-a <2022-b

 

15 tháng 8 2023

\(A=1+2+2^2+2^3+...+2^{2022}\)

\(2A=2+2^2+2^3+...+2^{2023}\)

\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)

\(A=2^{2023}-1\)

Mà: \(2^{2023}-1\) và \(2^{2023}\) 

Là hai số tự nhiên liên tiếp nên:

A và B là hai số tự nhiện liên tiếp

15 tháng 8 2023

làm giống phong ấy

Sửa đề: -6a+2022<-6b+2022

a>b

=>-6a<-6b

=>-6a+2022<-6b+2022

9 tháng 6 2021

có \(a\ge1348,b\ge1348\)\(=>ab=1348^2\)

và \(a+b\ge2696=>2022\left(a+b\right)\ge5451312\)

áp dụng BDT Cô si=>\(a^2+b^2+ab\ge3ab=3.1348^2=5451312\)

\(=>a^2+b^2+ab-2022\left(a+b\right)\ge5451312-5451312=0\)

\(=>a^2+b^2+ab\ge2022\left(a+b\right)\). Dấu'=' xảy ra<=>a=b=1348

 

 

 

 

 

 

 

12 tháng 8 2021

B = 2^2023 chứ nhỉ

A = 2^0 + 2^1 + 2^2 + ... + 2^2022

2A = 2^1 + 2^2 + 2^3 + ... + 2^2023

=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)

=> A = 2^2023 - 2^0

=> A = 2^2023 - 1

=> A và B là 2 stn liên tiếp

12 tháng 8 2021

Ta có:

A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021

⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022

⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)

⇔A=22022−20⇔A=22022−20

⇔A=22022−1⇔A=22022−1

Mà B=22022⇒B=A+1B=22022⇒B=A+1

⇒A⇒A và BB là 22 số tự nhiên liên tiếp. 

    chúc học tốt.

7 tháng 5 2023

C = A - B

= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)

= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²

= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)

= 6x² + 2023

Do x² ≥ 0 với mọi x

⇒ 6x² ≥ 0 với mọi x

⇒ 6x² + 2023 > 0 với mọi x

Vậy C luôn dương với mọi x

7 tháng 5 2023

C = A - B

= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)

= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²

= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)

= 6x² + 2023

Do x² ≥ 0 với mọi x

⇒ 6x² ≥ 0 với mọi x

⇒ 6x² + 2023 > 0 với mọi x

Vậy C luôn dương với mọi x

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

24 tháng 4 2022

Ta có: 202220212+k≤202220212 (với klà số tự nhiên bất kì) 

Ta có: 

A=202220212+1+202220212+2+...+202220212+2021

≤202220212+202220212+...+202220212=202220212.2021=20222021

Ta có: 202220212+k>202220212+2021=20222021.2022=12021với ktự nhiên, k<2021

Suy ra A=202220212+1+202220212+2+...+202220212+2021

>12021+12021+...+12021=20212021=1

Suy ra 1<A≤20222021do đó Akhông phải là số tự nhiên. 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.